
Art. Lebedev studio presents…

…site scripting language Parser3.

Parser technology author:
Konstantin Morshnev | http://www.moko.ru

Parser3 support:
Michael Petrushin (Misha v.3) | http://misha.design.ru

Documentation authors:
Alexey Sorokin | lex_sorokin@mail.ru
Vladimir Murov | lir_vl@mail.ru

01.11.2013

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Alexander Petrossian (PAF) | http://paf.design.ru

Parser 3.4.3

English documentation translation authors:
Roman Mamashev | ramesses@yandex.ru
Alexander Petrossian (PAF) | http://paf.design.ru

Parser3 author:
Alexander Petrossian (PAF) | http://paf.design.ru

Table of contents

How to work with the documentation 10

Agreed notations 10

Introduction 10

Lesson 1. Navigation menu 12

Lesson 2. Navigation menu and page structure 15

Lesson 3. First step—news section 20

Lesson 4. Second step—working with databases 25

Lesson 5. User�defined classes in Parser 31

Lesson 6. Working with XML 36

Syntax 38

... 38Variables

... 39Hash (associative array)

... 40Object of a class

... 41Static fields and methods

... 42User�defined classes

... 44Methods and user�defined operators

... 46Passing parameters

... 47Properties

Literals 50

... 50String literals

... 50Numeric literals

... 50Logical literals

... 50Literals in expressions

Operators 52

... 52Operators in expressions and their precedence
... 53def. Checking if object is defined
... 53in. Checking if document is in directory
... 53�f and �d. Checking if a file or directory exists
... 53is. Checking type
... 54Adding comments to parts of expressions

... 54eval. Evaluating mathematical expressions

... 55Branch operators
... 55if. Choose one of the two branches
... 56switch. Choosing one of multiple branches

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

... 56Loop�operators
... 56break. Force finishing loop
... 57continue. Finishing current loops` step
... 57for. Loop with specified number of repetitions
... 57while. Loop with condition

... 58connect. Connecting to a database

... 58use. Linking modules

... 59cache. Caching results of code’s work

... 60process. Compiling and processing string

... 61sleep. Delay of execution

... 61rem. Adding comments

... 61External and internal data
... 62untaint, taint, apply�taint. Transforming data

... 68Error handling
... 68try. Intercepting and handling errors
... 69throw. Reporting an error
... 70@unhandled_exception. Outputting unhandled errors
... 71System errors

... 72User�defined operators

Charsets 72

Class MAIN. Processing request 73

Bool class 74

Console class 74

... 74Static field
... 74Reading a line
... 74Writing a line

Cookie class 74

... 74Static fields
... 74Accessing
... 75Storing
... 75fields. All cookies

Curl class 75

... 76Static methods
... 76version. Returning cURL library version
... 76load. Loading file from HTTP/HTTPS server
... 76session. Creating cURL session
... 77options. Defining session's options

... 77Class options

Date class 80

... 80Constructors
... 80create. Relative date
... 81create. Arbitrary date
... 81create. Date and time in standard DBMS format
... 82create. Copying existing date
... 82now. Current date

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

... 82today. Current date

... 82unix�timestamp. Date and time in UNIX format

... 82Fields

... 83Methods
... 83gmt�string. Converting date to string in RFC 822 format
... 83last�day. Getting last day of month
... 84roll. Shifting date
... 84sql�string. Getting date in DBMS�style format
... 85unix�timestamp. Converting date and time to UNIX format

... 85Static methods
... 85calendar. Creating calendar for specified week
... 85calendar. Creating calendar for specified month
... 86last�day. Getting last day of month

Double, Int classes 86

... 86Methods
... 86format. Outputting number in specified format
... 87inc, dec, mul, div, mod. Simple operations on numbers
... 87int, double, bool. Transforming objects into numbers or bool

... 88Static methods
... 88sql. Retrieving number from database

Env class 88

... 89Static fields
... 89fields. Retreve all environment fields
... 89PARSER_VERSION. Retrieving Parser version
... 89Static fields
... 89Retrieving values of HTTP�header fields

File class 90

... 90Constructors
... 90base64. Decoding from Base64
... 91cgi and exec. Executing a program
... 92create. Text file creation
... 93load. Loading file from disk or HTTP�server
... 94sql. Loading file from SQL�server
... 94stat. Retrieving information about a file

... 94Fields

... 96Methods
... 96save. Saving file to disk
... 96sql�string. Saving file to SQL�server
... 96base64. Encoding to Base64
... 97md5. MD5 hash of file
... 97crc32. File checksum calculation

... 97Static methods
... 97delete. Deleting file from disk
... 97find. Finding file on disk
... 98list. Getting directory listing
... 98copy. Copying file
... 99move. Moving or renaming a file
... 99lock. Exclusive use of code
... 99dirname. Path to file

... 100basename. Name of file without path

... 100justname. Name of file without extension

... 100justext. File’s extension

... 100fullpath. Full name of file from server’s root directory

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

... 101base64. Encoding to Base64

... 101md5. MD5 hash of file

... 101crc32. File checksum calculation

Form class 101

... 102Static fields
... 102Getting form field value
... 102imap. Getting mouse click coordinates
... 103qtail. Getting query string remainder
... 103fields. All form fields
... 103tables. Getting multiple field values
... 104files. Getting multiple files

Hash class 105

... 105Constructors
... 105create. Creating an empty hash or copying existing hash
... 105sql. Getting SQL�query result as a hash

... 107Fields

... 107Using hash instead of table

... 107Methods
... 107_keys. List of hash keys
... 108_count. Number of hash keys
... 108_at. Element access by index
... 108foreach. Going through hash keys
... 109delete. Deleting key/value pair
... 109contains. Check for existance key in hash

... 109Working with sets
... 109sub. Subtracting hashes
... 110add. Adding hashes
... 110union. Joining hashes
... 111intersection. Intersecting hashes
... 111intersects. Checking if hashes intersect

Hashfile class 111

... 112Constructor
... 112open. Opening or creating

... 112Reading

... 112Writing

... 113Methods
... 113cleanup. Delete expired pairs
... 113delete. Deleting files from disk
... 113delete. Deleting key/value pair
... 113foreach. Going through hash keys
... 114hash. Converting to usual hash
... 114release. Save data on disk and unlock files

Image class 114

... 114Constructors
... 114create. Creating an object with specified dimensions
... 114load. Creating an object based on graphics file in GIF format
... 115measure. Creating an object based on existing graphics file

... 115Fields

... 116Methods
... 116html. Displaying an image

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

... 116gif. Encoding objects of class image in GIF format

... 117Drawing methods
... 117Line style and width
... 117arc. Drawing an arc
... 118bar. Drawing filled rectangles
... 118circle. Drawing an unfilled circle
... 118copy. Copying image fragments
... 119fill. Filling one�color areas of an image
... 119font. Loading font file to make an inscription on an image
... 120length. Getting inscription’s length in pixels
... 120line. Drawing a line on an image
... 120pixel. Work with image pixels
... 120polybar. Drawing filled polygons through joints coordinates
... 121polygon. Drawing polygons through joints coordinates
... 122polyline. Drawing broken lines through joints coordinates
... 122rectangle. Drawing rectangles
... 123replace. Replacing color in the area specified by coordinates table
... 123sector. Drawing a sector
... 123text. Making an inscription on an image

Inet class 124

... 124Static methods
... 124aton. Convert string with IP address to number
... 124ntoa. Convert number to a string with IP address

Junction class 124

Json class 125

... 125Static methods
... 125parse. Parsing JSON string into hash
... 126string. Converting Parser object into JSON�string

Mail class 128

... 128Static methods
... 128send. Sending a message via e�mail

Math class 130

... 131Static fields

... 131Static methods
... 131abs, sign. Operations with number sign
... 131convert. Converting number from one base to another
... 131crc32. String checksum calculation
... 131crypt. Hashing passwords
... 132degrees, radians. Degrees�radians transformation
... 133digest. Cryptographic hashing
... 133exp, log, log10. Logarithmic functions
... 133md5. MD5 hash of a string
... 133pow. Raising a number to power
... 134random. Random number
... 134round, floor, ceiling. Rounding of number
... 134sha1. SHA1 hash of string
... 134sin, asin, cos, acos, tan, atan. Trigonometric functions
... 135sqrt. Square root of a number
... 135trunc, frac. Operations with integer/fractional part
... 135uuid. Universally unique identifier
... 136uuid64. 64�bit unique identifier

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Memcached class 136

... 137Constructors
... 137open. Creating object

... 137Reading

... 138Writing

... 138Methods
... 138add. Adding item
... 138clear. Deleting all data
... 138delete. Delete key/value pair
... 138mget. Getting multiple items
... 138release. Closing connection to server

... 139Connection parameters

Memory class 139

... 139Static method
... 139compact. Collecting garbage

Reflection class 140

... 140Static methods
... 140base. Object's base class
... 140base_name. Name of object's base class
... 140class. Object's class
... 140class_name. Name of object's class
... 140classes. Classes listing
... 140copy. Copying object's fields
... 140create. Create an object
... 141delete. Delete object's field
... 141dynamical. Getting method's call type
... 141field. Getting object's field
... 142fields. Object's fields listing
... 142method. Getting object's method
... 142method_info. Getting information about method
... 143methods.Class's methods listing
... 143uid. Get object's unique identifier

Regex class 143

... 143Constructor
... 143create. Creating an object

... 143Fields

Request class 144

... 144Static fields
... 144argv. Command line parameters
... 144body. Getting query’s text
... 144charset. Specifying server’s charset
... 144document�root. Root of web�space
... 145post�body. Getting query's content
... 145post�charset. Getting the character set specified in incoming POST request
... 145query. Getting the query string
... 145uri. Getting the URI of the page

Response class 146

... 146Static fields

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

... 146HTTP�response headers

... 146body. Specifying a new response body
... 147charset. Specifying response charset
... 147download. Specifying a new response body
... 147headers. HTTP�response headers

... 148Static methods
... 148clear. Cancelling re�definition

Status class 148

... 148Fields
... 148memory. Information on memory—controlled by garbage collector
... 149pid. Process identifier
... 149rusage. Information on resources used
... 150tid. Thread identifier

String class 150

... 151Static methods
... 151base64. Decoding from Base64
... 151js�unescape. Decoding similar to unescape function in JavaScript
... 152sql. Retrieving string from a database

... 152Methods
... 152base64. Encoding to Base64
... 152format. Outputting a number in specified format
... 153int, double, bool. Converting string into number or bool
... 153js�escape. Encoding similar to escape function in JavaScript
... 154left, right. Getting substring on the left and on the right
... 154length. Getting string's length
... 154match. Matching a pattern
... 155match. Replacing pattern�matching substring
... 155mid. Getting substring from a specified position
... 156pos. Getting substring's position
... 156replace. Replacing substrings in the string
... 157save. Saving string to a file
... 157split. Splitting a string
... 158trim. Trimming letters
... 159upper, lower. Changing case of the string

Table class 159

... 159Constructors
... 159create. Creating an object based on a specified table
... 159create. Copying existing table
... 160load. Loading table from a file or HTTP�server
... 161sql. Querying database

... 161Options of file format

... 162Copying and search options

... 162Retrieving data stored in a column

... 162Retrieving data stored in current row as a hash

... 163Methods
... 163append. Appending data to a table
... 163columns. Getting a table's structure
... 163count. Number of rows in table
... 164csv�string. Converting table to string in CSV format
... 164flip. Transposing a table
... 164hash. Transforming a table into hash with specified keys
... 166join. Joining two tables
... 166locate. Locating a specified value in a table

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

... 167menu. Iterating through all table rows

... 167foreach. Iterating through all table rows
... 168offset and line. Getting current row offset
... 168offset. Changing current row offset
... 169save. Saving table to a file
... 169select. Selecting entries
... 169sort. Sorting table data

Void class 170

... 170Static method
... 170sql. SQL�query returning no result

XDoc class 171

... 171Constructors
... 171create. Creating a document based on specified XML
... 171create. Creating a new empty document
... 171create. Creating a document based on specified file
... 172load. Loading XML from disk or HTTP�server or other source

... 172parser://method/parameter. Reading XML from arbitrary source

... 172Parameter of creating a new document: Base path

... 173Methods
... 173DOM
... 174file. Converting document into object of class file
... 174save. Saving document to file
... 174string. Converting document into string
... 175transform. XSL transformation

... 175Document�to�text conversion parameters

... 176Fields
... 176DOM
... 176search�namespaces. Name spaces hash to search in

XNode class 177

... 178Methods
... 178DOM1
... 178select. XPath search for node
... 179selectSingle. XPath search for single node
... 179selectString. XPath search for a string
... 180selectNumber. XPath search for a number
... 180selectBool. XPath search for a Boolean value

... 181Fields
... 181DOM

... 182Constants
... 182DOM. nodeType

Appendix 1. Paths to files and directories, working with
HTTP�servers 182

... 184Variable CLASS_PATH

Appendix 2. Format strings 184

Appendix 3. Format of connect string used by operator
connect 185

... 185For MySQL

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

... 186For SQLite

... 187For ODBC

... 187For PostgreSQL

... 188For Oracle

... 189ClientCharset. Connect parameter—charset of communication with SQL server

Appendix 4. Perl Compatible Regular Expressions 189

Appendix 5. How to name variables, methods, and
classes correctly 191

Appendix 6. How to fight errors and read someone
else’s code 192

Appendix 7. SQL queries with bound variables 192

Installing and configuring Parser 193

... 193Configuration file
... 194Configuration method
... 196File defining charset: format description

... 197Installing Parser on web�server as CGI

... 198Installing Parser on web�server Apache as module

... 198Installing Parser on web�server IIS, version 5.0 or higher
... 199mod_rewrite analogue

... 199Using Parser as standalone interpreter

Source codes 199

... 200Compile under *nix

... 201Compile under Windows

Index 202

Parser 3.4.3

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

How to work with the documentation

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

10Parser 3.4.3

How to work with the documentation
The documentation is divided into three parts.

The first deals with practical examples of how to use Parser in handling various tasks. In this part, while
creating a model site, you'll learn basic opportunities provided by this language and its most commonly used
constructions. It doesn't really matter what text editor you'll choose to write code in Parser. The only thing we
do recommend, however, is that the editor you choose support auto brace matching and syntax coloring. The
simple reason for it is that, as your code grows bigger and more complicated, you'll find it more difficult to
understand what each bracket relates to. Auto brace matching will therefore make your work a lot easier.
Syntax coloring is also useful, as it makes reading and editing code easier, too.

The practical examples part is divided into lessons. Each lesson starts with working code, which may be simply
copied and pasted into certain files. The whole example is then analyzed, and its logic is explained. Each lesson
ends with brief enumeration of all key points and recommendations on what you should consider in the
future. Close study of provided lessons will give you all knowledge you need to implement your own projects
in Parser.

The second part is basic syntax reference providing rules of how to write different constructions.

The third part is the reference on operators and basic classes intended to provide descriptions of methods and
brief examples of how to use them.

Information on how to install and configure Parser can be found in Appendices.

Agreed notations
ABCDEFGH � Parser code in examples (colored to be distinguished from pure HTML (Courier New, 10) and
to make understanding easier).

ABCDEFGH – Files and directories.

ABCDEFGH — Additional/reference information.

[3.1.4] — Parser version number, when this feature or option was introduced.

Symbol "|" in the reference is equal to conjunction "OR".

Introduction
And the LORD said, I have surely seen the affliction
of my people who are in Egypt, and have heard their
cry by reason of their taskmasters; for I know their
sorrows;
And I am come down to deliver them out of the
hand of the Egyptians, and to bring them up out of
that land unto a good land flowing with milk and
honey...
(Exodus, 3, 7�8)

Parser?

Our dearest reader is now most likely wondering what it may mean. You'll get the answer quite soon, but to
begin with, we'd like to make several assumptions:

The first and foremost (which is undoubtedly a prerequisite) is that you know what HTML is. If this
abbreviation is unclear to you, you will surely find further reading boring and useless, since—being a
programming language—Parser is designed to simplify and systematize HTML�programming.

Introduction

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

11Parser 3.4.3
The second and essential is that we encourage you to practice a lot (since only practice makes perfect), which
presupposes that you have Parser3 handy (that is, installed). A comprehensive guide on how to install and
configure Parser may be found in a relevant Appendix.

And the third (just the third) is that you have some time to spare, you're patient enough, your IQ is 50 or
higher, and you're eager to make your HTML�programming easy, logical, and elegant. We, in our turn,
promise that learning this language is worth spending time, since it will provide you with new valuable
opportunities.

As you can see, that's not really much. All the rest is OUR concern.

Parser…

Parser was born in 1997 in Art. Lebedev Studio (www.design.ru). It was designed for those who have been
creating best sites in Runet (Russian Internet) to facilitate their work and let them spend less time on routine
work and more—on creative. Why should we drive nails with a microscope if there's a hammer?

That is why the most of Internet projects of the Studio are written in Parser. This technology is much simpler
than anything designed for the purpose. But simplicity doesn't imply primitiveness here, as Parser can be used
by both professional programmers and beginners. Now we provide this opportunity to you.

Parser's concept is quite simple. One embeds special constructions into HTML pages to be processed by Parser
before a visitor can see the result. Parser handles the task of final arrangement and layout, too. This reminds a
meccano, where one simply has to assemble all ready parts into different combinations. If you fall short of
parts most commonly used in this meccano, you can design your own "to�measure" modules which will fulfill
your personal needs. It's feasible and, indeed, quite fast to do!

You will see it for yourself when you get down to work.

Parser!

Let's sum it up. What opportunities does Parser provide? You get variables, loops, conditions, and so on—in
short, everything lacked by HTML alone. Unless you use Parser, your every document will be much bigger and
still many problems will remain unsolved. Parser will deliver you from repeating same instructions all the time
and let you form dynamic pages reacting to user's needs, work with databases, XML, and external HTTP�
servers, and quickly change pages' layout. This all can be done without complicated programming commonly
needed.

Your pages will be assembled from separate ready pieces and you will only let Parser know what to take, how
many to take, where to place and what succession to keep. If you need to rearrange or add something, you
will just need to specify it and the rest will be done automatically. Besides, the project will become more logical
and simpler to understand by means of structuring.

Very soon you will be enjoying the long�expected privilege of those who used sophisticated programming
languages, which needed months or sometimes even years of learning and practice.

There is one more evident advantage: separate modules can be developed by different people, who will then
be able to support and update them independently. This will ensure comfortable division of labor and
possibility for many people to work over one project at the same time in most comfortable conditions.

All in all, we can count advantages of using Parser for ages. Anyway, we hope we said enough for you to get
down and try. After all, doesn't our experience prove our case? Moreover, we don't charge any money. We
just want Internet to become better! And we have a ready and safe solution—Parser. We are sure you'll love it
the way we do.

Let's go and get it!

Lesson 1. Navigation menu

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

12Parser 3.4.3

Lesson 1. Navigation menu
Let's begin at the beginning, as they say. Let's assume you want to build a site. The first thing you'll need to
figure out is how the information on the site should be organized, how many categories, sections, etc. should
be there. All these questions arise at the very first stage, which is "The site's organization".

And what should the navigation be like? A good navigation system must meet many demands. It must be
simple, easily recognizable, uniform, usable, quickly loadable, and it must indicate precisely where the user is
at the moment. Moreover, the site shouldn't give out "Error 404" message, that is, none of the links must be
"dead". If you have previously made sites, you have probably faced the problem of proper navigation.

Is there anyone who doesn't want to have a handy solution, which could automate the whole process—a
solution, which would enable you to write a code once and for ever, leaving just one place to edit further on,
and add as many sections as you wish?

Creating a menu which can guide a user safely through the site is the task we want to begin this manual with.
Why this? Simply because a great amount of tags like:

is hard to control. What if you have to add one more section? You will have a tough time changing every page
with your own hands. And, keeping in mind that "to err is human," can you be sure that after such an update
your visitors won't get "Error 404" messages? Here is the problem which can be easily solved by Parser.

The solution is simple: we create a function in Parser that will generate a necessary fragment of HTML. In
Parser's terminology, functions are called methods. Wherever we need such a code, we will simply command
to insert the navigation menu and the page containing the menu will be created. This needs just a few simple
steurips:

1. All information about our links will be stored in one file, which will further allow us to make necessary
changes in just one place. In the root directory of our future site we'll thus create file sections.cfg with the
following content:

section_id name uri

1 Mainpage /

2 News /news/

3 Contacts /contacts/

4 Prices /price/

5 Your opinion /gbook/

Here we use a so�called tab�delimited format, where table's columns are delimited with tab character and
rows—with newline character. If you copy this table into a text editor, tab and new line characters will be just
pasted by it automatically. However, if you are going to create and edit such tables manually, what you should
keep in mind is that when dealing with tables, we ALWAYS use tab�delimited format.

2. In the same directory (root directory) we create file auto.p, where we'll store all the parts, which Parser will
use further on to construct the site. AUTO means that these parts will always be available to Parser at any time
and extension ".p"—as you have probably guessed already—means... yeah, right—in the flesh!

3. File auto.p will contain the following code:

@navigation[]
$sections[^table::load[sections.cfg]]
<table width="100%" border="1">

<tr>
^sections.menu{

<td align="center">
 <nobr>$sections.name</nobr>

Lesson 1. Navigation menu

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

13Parser 3.4.3
</td>

}
</tr>

</table>

Data stored in this file is what our navigation menu will be based on further.

All preliminary work is now complete. Now we should create the file where it all will appear (e.g. index.html)
and tell Parser to insert the navigation menu. In Parser we use the term "to call method" and write it like this:

^navigation[]

Now we just open the HTML file in browser and see ready�to�serve navigation menu. From now on, we can
put this magic ^navigation[] in any page and Parser will insert our menu there. The page will be generated
"on�the�fly." Gotcha!

If you can see it in your browser—congratulations! You have just entered the world of dynamic sites. Very soon
you will be able to use databases to generate your pages and do many other things.

Still, between the cup and the lip a morsel may slip, as they say. Let's now analyze what we've done to
succeed. Look at the code in auto.p. Don't be scared if it still seems unclear. In just a few moments we'll clear
up the matter. Look at the first line, which is

@navigation[]

It looks almost exactly like ^navigation[], which we put into our page (index.html) to get the menu. The only
difference is the first character (@ instead of ^), but it is this character that makes all difference—by using it,
we define a method to be called later. Starting a line in Parser with character @ we imply that we now define
some block to be used later. The word following character @ (navigation) will be the name of the new
method. It is up to us to pick up a name for a method. We may call this method
let_us_place_the_menu_here, but such a name will be harder to operate with. Still, if you wish, you may
call it so.

It is vitally important to give simple and clear names. They must indicate clearly what the object will store and
do. Don't fray nerves and don't waste time of yours or those, who may have to analyze your code later. Your
names may be in any language, but you should keep uniformity—don't mix languages naming one object in
German and another one—in Swahili...

Let's take the next line:

$sections[^table::load[sections.cfg]]

Here is the key line of our code. It is quite big, so let's examine it part by part. The line starts with $ (dollar
sign) and word 'sections' after it. This is the way we indicate a variable in Parser. It's easy, yet worth
remembering: if you see $var in the text, that means you deal with a variable 'var'. A variable may contain
any type of data: numbers, strings, tables, files, images, or even a piece of code. If we want to assign
'www.parser.ru' to variable $parser_home_url we should use structure like this:
$parser_home_url[www.parser.ru]. Later on, we can access the variable's value by referring to it, that
is, writing $parser_home_url wherever we need, and then the value, which is www.parser.ru, will be
output.

In short:

$var[…] —assign variable

$var —retrieve value

A detailed explanation can be found in section "Variables".

In our case, variable $sections will store the table taken from sections.cfg.

Lesson 1. Navigation menu

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

14Parser 3.4.3
Any table in Parser is regarded as an independent object, with which only certain actions can be performed.
For example, if object is a table, we can add or delete rows in it. As long as a variable can store any data, we
should indicate that the value we assign is nothing else but table.

A lyrical digression:
Let's take a real world example. All vehicles can be roughly divided into certain major classes such as cars,
trucks, vans, caterpillars, motorcycles, etc. Any vehicle is inevitably an object of a class. You can tell vehicles of
one class from those of another, because all the vehicles belonging to a class have common characteristics,
such as vehicle weight, maximum load weight, etc. Any vehicle can perform some actions like move, stand
still, or break. Any vehicle has its own distinctive properties. And, what is most important, every vehicle must
be CREATED, it cannot just appear by itself. When someone invents a new vehicle model, one knows what
class the vehicle will belong to, what properties it will have, and what it will be able to do. It's just the same in
Parser: every object belongs to a certain class. Every object of a class can be created by the constructor of this
class and will inherit properties (fields) and methods (actions) common to all such objects.

Let's sum it up
Any object in Parser belongs to a certain class and has the fields and methods of this very class. To use this
object, you must first create it with the class constructor. Learn this terminology by heart—it is what your
work will be totally based on.

Let's get back to our code. We assigned the following value to variable $sections:

^table::load[sections.cfg]

By this, we have created an object of class table with constructor load. Common rule we use to create an
object looks like the following:

^class::constructor[parameters]

A detailed description may be found in section "Passing parameters".

As a parameter here, we passed the path to our file with the table.

Variable $sections now contains the table with sections of our site. Parser regards it as an object of class
table and knows precisely what actions can be performed with it. So far, we need only one method of the
class—menu, which iterates through the table. We also need values from fields of the table itself. The syntax
used to call a method of an object is:

^object.class_method[parameters]

To retrieve a value from object fields (as we deal with a definite table with the fields defined by ourselves) we
use a construction:

$object.field

Now, that we know it all, we can easily see the meaning of the last part of our code:

<table width="100%" border="1">
<tr>
^sections.menu{

<td align="center">
<nobr>$sections.name</nobr>

</td>
}
</tr>

</table>

We generate an HTML table, where each column will contain values taken from the fields of our table
$sections: uri (section's uri) and name (section's name). We use method menu to iterate through the table
and retrieve data stored in it. Thus, it doesn't actually matter how many sections we have—none of them will

Lesson 1. Navigation menu

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

15Parser 3.4.3
be lost or skipped. We are free to add or remove sections, or even change their order. All changes will be made
only to file sections.cfg and the logic of the work will remain intact—simple but nice!

Let's summarize:

What have we done?
We have written our first piece of code in Parser and learnt how to create a navigation menu for any page of
our site using data stored in a separate file.

What have we learnt?
We got a glimpse of conceptual definitions of the language (class, object, property, and method) as well as
certain basic constructions of Parser.

What should we remember?
Parser is an object�oriented language. Every object belongs to a certain class, has its own properties and can
use methods of the class it belongs to. To create an object one must use a constructor of the class.

Syntax of working with objects:

$variable[value] Assigning a variable

$variable Retrieving a variable's value

$variable[^class_name::constructor[parameters]] Creating an object of class class_name and assigning it
to variable

$variable.field_name Retrieving the value of an object's field stored in variable

^variable.method[] Calling an action (method of the class, which the object
stored in the variable belongs to)

What's next?
We are going to improve our menu, because it has certain imperfections so far: it places a useless link (which
leads to the page we see at the moment), has columns of different width. In our second lesson, we are going
to solve these problems and add some useful extras.

Lesson 2. Navigation menu and page structure
We finished the previous lesson with pointing out imperfections in the way our menu worked. Let's now fix
them. So far, our menu has a spare link to the current page, which makes our site look rather clumsy. To avoid
it, we should check if a section in the menu is the current page. If so, we shouldn't place a link. To indicate
current section, we should change background color in current section cell.

Open file auto.p and replace its content with:

@navigation[]
$sections[^table::load[/sections.cfg]]
<table width="100%" border="0" bgcolor="#000000" cellspacing="1">

<tr bgcolor="#FFFFFF">
^sections.menu{

^navigation_cell[]
}
</tr>

</table>

@navigation_cell[]
$cell_width[^eval(100\$sections)%]
^if($sections.uri eq $request:uri){

<td width="$cell_width" align="center" bgcolor="#A2D0F2">
<nobr>$sections.name</nobr>
</td>

Lesson 2. Navigation menu and page structure

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

16Parser 3.4.3
}{

<td width="$cell_width" align="center">
<nobr>$sections.name</nobr>
</td>

}

What have we changed? Not much, seemingly. But our module has been significantly improved. We have
added a new method—navigation_cell—which is called from navigation method. As you have
probably noticed, we introduce here a new structure:

^if(condition){code to execute if true}{code to execute if false}

What this piece does is not really hard to understand. The round brackets contain some condition
and—depending on the value returned (TRUE or FALSE)—the code will follow different branches. If condition
contains an expression which equals zero, the resulting value will be 'FALSE,' otherwise—'TRUE'. We use
operator if to check whether we need to place a link on the section or not. Let's now see how the whole piece
of code with condition works. We will compare two strings, where the first is the URI�string contained in
column uri in table sections and the other is the current URI ($request:uri returns string equal to the
current URI). Here you may ask—and what strings can be equal? Of course those which are fully equal in
length and characters contained in them.

To compare two strings, in Parser, we use the following operators:

eq – strings are equal (equal): parser eq parser
ne – strings are not equal (not equal): parser ne parser3
lt – number of characters in the first string is less than that in the second (less than): parser lt
parser3
gt – number of characters in the first string is greater than that in the second (greater than): parser3 gt
parser
le – number of characters in the first string is greater than or equal to that in the second (less or equal)
ge – number of characters in the first string is less than or equal to that in the second. (greater or equal)

Here is how it works: if $sections.uri equals $request:uri a link shouldn't be placed (and the table
cell will have different background color—we should always try to make surfing through our site as
comfortable as possible), if not—place the link, then!

Another imperfection is that we have columns of varied width. That will do if you don't really care about the
way your page looks, but is, frankly speaking, rather clumsy. The problem is quite easy to solve, though: we'll
just take the width of the whole menu as 100% and divide it by the number of available sections (the amount
of rows in table sections). In this case, we use operator ^eval() and the number of rows in our table (we can
use object of class table in mathematical expressions—the numerical value of the table will then be the
number of its rows). You should also remember that by using backslash instead of forward slash we use
integer division.

Now, we should stop for a while to pay operator ^eval() more attention. This operator allows us to evaluate
a mathematical expression without additional variables. We simply write:

^eval(expression)[format]

By using [format] we can specify in what format we expect the result of evaluation. By specifying format as
[%d] we get our number without fractional part; [%.2f] returns number with two�figure long fractional part,
while [%04d] returns number without fractional part, four�figure long, and—as we put zero in front of "4"
while specifying format—the absent figures in the front will be padded with zeros on the left. Sometimes we
do need formatted number (For example, 12.44 $ looks more sensible than 12.44373434501 $...).

We are through with our menu—it's now ready.

The first building block of our future site is now ready. Let's now proceed to page structure. Each page may be
divided into three parts, which are header (upper part of a page), body (main information including our
navigation menu) and footer (the lower part of a page). This is a kind of general pattern for most sites.

Lesson 2. Navigation menu and page structure

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

17Parser 3.4.3
Footer will be the same for all pages, header will remain the same in style but with varying content (at
least, page titles will vary) and body will always be different but of the same style, common for all pages (for
example, it may consist of two information blocks—30% and 70% wide respectively). The menu will be
included in body block.

Every page will have the following structure:

 header

 navigation

 body_additional
 (30%)

 body_main
 (70%)

 footer

Each section will be stored in a separate method (function). Let's see how we do it:

To create our footer we add the following piece of code to file auto.p:

@footer[]
<table width="100%" border="0" bgcolor="#000000" cellspacing="0">

<tr>
<td></td>

</tr>
</table>
$now[^date::now[]]

<center>Powered by Parser3
1997-$now.year</center>

</body>
</html>

There is nothing new here, except the piece where we use class date. We create it with constructor now to get
the current date and then take the value of field year. If you find it unclear, please get back to our first lesson
where we described working with objects by the Example of objects of class table. In the present case, the
process is just the same, except that we use another class, which is date.

Module header is a little harder to make. On one hand, we must supply each page with unique title. On the
other hand, we must stick to the same layout while generating unique content. What should we do? We are
going to create, in auto.p file, a new function—header, from within which we will call another
function—greeting. Function greeting, in its turn, will be defined in every page to provide unique greeting
for it.

Let's add the following code to file auto.p:

@header[]
<html>
<head>
<title>Test site in Parser3</title>
</head>
<body bgcolor="#FAEBD7">
<table width="100%" border="0" bgcolor="#000000" cellspacing="1">

<tr bgcolor="#FFFFFF" height="60">
<td align="center">

 ^greeting[]
</td>

</tr>
</table>

Lesson 2. Navigation menu and page structure

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

18Parser 3.4.3
And now, the sweetest part: Parser allows us to play an amazing trick—we can once and for ever define
uniform structure for all pages in auto.p and then—by using functions like greeting contained in pages
themselves—get unique content for all pages (still sticking to the same layout). How does it work?

To the very beginning of file auto.p, we will place function @main[], which will always be automatically
executed by Parser in the first place. From within it, we will call functions generating pages' parts.

In the beginning of auto.p we thus write:

@main[]
^header[]
^body[]
^footer[]

…and provide unique title for a page by defining function greeting, which will be called from function
header:

…for the main page:
@greeting[]
Welcome!

…and for the guestbook:
@greeting[]
Leave your mark on history...

and so on:

Now, as a page is loading, Parser will do the following:

1. Function main defined in auto.p will automatically run first;
2. It will call function header, which, in its turn, will call function greeting;
3. As function greeting is defined in the page itself, function header will call this very greeting and not
greeting defined in any other page or even in auto.p itself (function overriding takes place);
4. After finishing with greeting and header, the Parser will trigger functions body and footer.

As a result, we will get a page having all necessary elements and unique greeting in its upper part. Overridable
functions are also referred to as virtual. From within auto.p, we call function which may be overridden and
may thus vary from page to page. At the same time, we stick to the same structure and our pages remain
intact in both logic and style.

It remains only to define body. As we have decided, it will consist of two parts to be generated by two
separate functions, for instance, body_main and body_additional. Since our navigation menu is logically
related to the main part of the page, we call navigation from within body function. In this case, we should
also use the mechanism of virtual functions. Thus, we should add to file auto.p:

@body[]
^navigation[]
<table width="100%" height="65%" border="0" bgcolor="#000000" cellspacing="1">

<tr bgcolor="#ffffff" height="100%">
<td width="30%" valign="top" bgcolor="#EFEFEF">

^body_additional[]
</td>
<td width="70%" valign="top">

^body_main[]
</td>

</tr>
</table>

Functions body_main and body_additional should be defined in our page the same way we did with
greeting:

Lesson 2. Navigation menu and page structure

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

19Parser 3.4.3
@body_additional[]
This is main page

@body_main[]
This is main content

This text can be placed in index.html. Well done! Structure is now ready. We have defined all necessary
modules in file auto.p, made up uniform structure, and prepared everything to generate pages. We no
longer need to write the same HTML code for every page. A common page will now look like the following
(the example is given for index.html, the main page):

@greeting[]

Welcome!

@body_additional[]
This is main page

@body_main[]

This is main content

Simple and clear, isn't it? Everything is in its place and ready to use. After processing a code like this, Parser will
create HTML code with unique title, menu, main information block (sticking to the uniform layout and style),
and footer, which will be the same for all pages. In fact, we have made up a site ready to be filled with
information. This is how you can make up mini business site in a couple of minutes. This is by no means the
only solution, but it perfectly puts everything in its place. Some mental workload put in structuring our site will
give back easy support and enhancement. All common features are stored in auto.p and the rest—which
must be unique for every page—will be stored in pages themselves.

You are free to improvise now. If you have to change the layout of your header you will just need to open
auto.p and change function header once. As you have done it, your every page will have new header
design. If we dealt with pure HTML, we would have to rewrite every HTML page manually. This is just the same
for all other modules. If you want to change the general layout (for example, to add some block) just add it as
a new function and call it from within main in auto.p.

Such structure has yet another great advantage: imagine, one of your pages needs footer different from what
you usually use (remember—in the beginning, we assumed that footer should be the same for all pages). All
you should do is override existing footer by placing new function footer in the page. For example, put this
code into /contacts/index.html:

@greeting[]
Contact us

@body_additional[]
Here are our addresses

@body_main[]
:Page's content:

@footer[]
Here are our contacts

…and you will change footer on this page for the one we have just given. That means, if Parser finds some
function in the page, it will use it as a substitute for the function with the same name given in auto.p. If we
don't specify footer in the page itself, Parser will use footer declared in auto.p.

To end with, let us give you some food for thought. We hope it will let you understand Parser better.

In our code, we used $request:uri. It looks different from all we have dealt with so far. What is it, then? It
resembles $object.property (value of an object's field, which we dealt with in (Lesson 1) , but instead of
a dot, we use a colon. Actually, this is also a field's value, but this is not an object's field. This is a field of a
class request. Parser doesn't provide any constructors to create objects of this class. Fields of the class are

Lesson 2. Navigation menu and page structure

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

20Parser 3.4.3
generated by Parser itself and we can directly access them. In technical terms, it is called static variable. There
are also static methods, which we will get to know as soon as in the next lesson. Such methods can also be
called directly, without first creating an object of the class with the help of a constructor. Remember: static
fields and methods always need a colon to be used with them. Thus, when writing $class:field, we access
a field of the class itself, and as we write ^class:method, we call a static method of the class. For example,
we can look at class math which is designed for working with mathematical functions. It has only static
methods and variables:

$math:PI—returns π. This is a static variable of class math.

^math:random(100)—returns a pseudorandom number from the range of 0�100. This is a static method of
class math.

Ways of accessing methods and fields differ only in using dot/colon.

Let's sum it up:

What have we done?
We have fixed some problems in our navigation menu, which we started building in the previous lesson, and
added new blocks: header, footer and body to determine the way our pages will look. Now we have an
elegant technique, which can help us make a site to start with in a wink.

What have we learnt?
We have learnt code branching, putting results of mathematical calculations into our pages, comparing
strings, and getting present URI. We have also learnt new methods of classes table and date and a
powerful tool of Parser's virtual functions.

What should we remember?
We can place function main in auto.p, and it will be run automatically. We can call any function from within
another function. All functions to be called from within function main must be declared either in auto.p or
inside the page. If there are two functions with the same name, the latter overrides the former, which is, in
this case, ignored (we call it virtual function).

What's next?
There is always a room for perfection. We start with simple things and go further to more complex ones, such
as working with forms and databases, which we'll need to make our site genuinely interactive. At the same
time, we're going to learn new opportunities provided by Parser for web�developers' easy living.

Lesson 3. First step—news section
During the previous two lessons we have made up the general structure of our site. It is now nothing but an
empty box and we should fill it. Nearly every site has a news section and so will ours. As we start a new
section, we should first make up a menu for it. Here, we will do just the same. Our menu for news section will
look like a calendar—the thing all people are well accustomed to.

To create a calendar with pure HTML is not an easy task and the code will be rather huge, but as you will see,
Parser will do it quite easy. Let's go.

All files related to news section we will locate in directory /news/—as we have previously indicated in
sections.cfg. First, we will create there file auto.p. Surprised? Yes, we can create auto.p files in any
directory. Still, we should remember that the functions we place into these files will be accessible only to the
directory they are in (including subdirectories). The reason is that we shouldn't overload one auto.p file with
ALL functions, so, we should relieve our main auto.p of section�dependent functions and keep there only
those functions, which we will need for ALL directories (such functions as, probably, footer or header).
The directory�dependent stuff we will place in auto.p files in relevant directories.

One more thing: if we redefine a function in a section's auto.p—thus overriding the function with the same
name defined in root auto.p—root function will be ignored in favor of the section's function. The virtual
functions mechanism described in the previous lesson will be triggered.

Lesson 3. First step—news section

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

21Parser 3.4.3
Let's get back to our codes. To /news/auto.p we add the code:

@calendar[]
$calendar_locale[

$.month_names[
$.1[January]
$.2[February]
$.3[March]
$.4[April]
$.5[May]
$.6[June]
$.7[July]
$.8[August]
$.9[September]
$.10[October]
$.11[November]
$.12[December]

]
$.day_names[

$.0[Sun]
$.1[Mon]
$.2[Tu]
$.3[Wed]
$.4[Thurs]
$.5[Fri]
$.6[Sat]

]
$.day_colors[

$.0[#000000]
$.1[#000000]
$.2[#000000]
$.3[#000000]
$.4[#000000]
$.5[#800000]
$.6[#800000]

]
]
$now[^date::now[]]
$days[^date:calendar[eng]($now.year;$now.month)]
<center>
<table bgcolor="#000000" cellspacing="1">

<tr>
<td bgcolor="#FFFFFF" colspan="7" align="center">

$calendar_locale.month_names.[$now.month]
</td>

</tr>
<tr>

^for[week_day](0;6){
<td width="14%" align="center" bgcolor="#A2D0F2">

$calendar_locale.day_names.$week_day

</td>

}
</tr>

^days.menu{
<tr>

^for[week_day](0;6){
^if($days.$week_day){

^if($days.$week_day==$now.day){
<td align="center" bgcolor="#FFFF00">

<font

Lesson 3. First step—news section

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

22Parser 3.4.3
color="$calendar_locale.day_colors.$week_day">

$days.$week_day

</td>
}{
<td align="center" bgcolor="#FFFFFF">

$days.$week_day

</td>
}

}{
<td bgcolor="#DFDFDF"> </td>

}
}

</tr>
}
</table>
</center>

We have just defined function calendar, which creates HTML�code of our calendar. At first, the code may
seem unexpectedly big, but it's only because we are trying to handle a more complicated task. Let's now see
what we've done:

The biggest piece of our code—that, which starts with $calendar_locale—appears strange. Look at it
closely: we seem to define some data for our calendar, and it resembles a table. The piece we define as
$calendar_locale is called 'hash' or 'associative array.' Why do we need it? As you can see, we link the
ordinal numbers of months and days of the week with their names in English, and link hexadecimal color
values with certain numbers. Uh�huh! Now it's getting clearer. We need hash to link (associate) a name with
an object. In our case, we link numerical values of months and days of the week with their names (strings).
Parser uses object model, so a string is also an object. It's quite easy to get ordinal number of a month, but a
calendar for "May" seems more sensible for a human eye than a calendar for "5," and names of the days given
in calendar like 0, 1, or 2 instead of Sunday, Monday, or Tuesday will look completely crazy. That's why we
create an associative array.

A general way of assigning variables�hashes is like this:

$name[
 $.key[value]
]

Such a construction allows further referring to a hash key by writing $name.key and getting associated
value. As you have probably noticed, fields of our hash are three other hashes.

After defining hash we see variable now, which we use to store present date, but further, there is a completely
strange construction:

$days[^date:calendar[eng]($date.year;$date.month)]

Its logic is similar to that of constructor, since variable days now contains a table with a calendar for the
current month of this year. Still, we see only one semicolon, whereas for constructor we use two. That shows
us that calendar is one of static methods of class date. Static methods, like constructors, which we already
know, can return objects. That is why we should assign created object to a variable. We have already touched
upon static fields and methods in the end of the previous lesson. Such methods exist due to the fact that
certain objects or their properties, such as page's URI or calendar for the current month, are unique. That is
why such objects and fields comprise a separate group and can be accessed directly, without using
constructors. If we call a static field, we get the value of the field of the class itself (but NOT of the object).

Class math, which is designed for working with mathematical functions, can serve as an example. As π is
unique, we refer to it by writing $math:PI and get the value of static field of class math itself.

Lesson 3. First step—news section

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

23Parser 3.4.3
As a result, variable days will contain such table:
Table 1 (result of this code implemented on May 30, 2003)

0 1 2 3 4 5 6 week year

01 02 03 04 18 2003

05 06 07 08 09 10 11 19 2003

12 13 14 15 16 17 18 20 2003

19 20 21 22 23 24 25 21 2003

26 27 28 29 30 22 2003

This is the table we will work with further on. We cannot retrieve the whole content stored in variable days by
simply writing

$days

If we do so, Parser won't understand what exactly we need—is it some row, the whole table or a value stored
in some column? We also need to elaborate the content of the table so it could be understandable for a
human being. For this purpose we have created a hash with names of days and months. Further, we use HTML
to create a table where the first row will contain the name of the current month. To get the name of the
month we use data stored in our hash, where ordinal number of a month is associated with its name.

$calendar_locale.month_names.[$now.month]

Let's see how it works: we retrieve the value of field month_names of hash calendar_locale with ordinal
of the current month identified as $now.month. This construction will result in name of the month in English
(in our case) or any other language (it depends on what language you use when specifying associated
strings).

In calendar's next row, we will output names of days of the week using hash data. Let's see precisely what
we're after: we will go through the numbers of days of the week (from 0 to 6) step by step and output strings
which we have previously associated with these numbers (that is retrieve them from the field day_names of
hash calendar_locale). The best way to do it is to use a loop, i.e. a succession of actions to be executed a
certain number of times. We will use loop for. The syntax for this loop is:

^for[counter](counter values' range, for example 0;6){succession of counter'
values}

One of the best things provided by loops is that we can use values of the counter within the loop, referring to
it as to a variable. That's what we'll do:

^for[week_day](0;6){
<td width="14%" align="center" bgcolor="#A2D0F2">

$calendar_locale.day_names.$week_day

</td>

}

It is simple if you know what a loop is: sequentially changing the value of week_day, starting with 0 and
ending with 6 (where week_day is loop counter), we get seven values:

$calendar_locale.day_colors.$week_day —font color
$calendar_locale.day_names.$week_day —name of day of the week.

The idea behind this is just the same as that we used to get months' names, but here we use different hash
keys.

You would most probably ask, 'why is there day_colors key?' The answer is 'fine feathers make fine birds.'
If we want our calendar to look very much like real, we should make weekdays different from rest�days.

Lesson 3. First step—news section

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

24Parser 3.4.3
The next block needs special attention. Let's examine the task carefully. We will:

1. go through the rows of table days (Table 1) step by step;
2. in each row, go through the columns step by step, outputting the values (which are days of the month);
3. correctly indicate empty cells in our calendar (that is to check if there are blanks in the first and the last
weeks of the month)
4. Indicate current date (output it in different color and make it bold).

How will we do it? The first step is easy to make with the help of familiar method menu of class table:

^days.menu{...}

To go through the columns in each row, we'll use the loop for, which we have recently learnt:

^for[week_day](0;6){...}

To check whether we should output empty cells we will use operator if. In fact, any check can be done with
this operator:

^if($days.$week_day){
…

}{
<td bgcolor="#DFDFDF"> </td>

}

Note: in our condition we do not compare $days.$week_day with anything. Thus we perform zero�check.
Parser understands this construction like the following:

"If $days.$week_day exists (not empty), then do {...} otherwise output an empty grey table cell."

Most of the work is complete. Now we should only highlight current date. We can do it with another if, where
we shall compare present value in table days with current date ($days.$week_day==$now.day):

^if($days.$week_day==$now.day){
<td align="center" bgcolor="#FFFF00">

$days.$week_day

</td>

}{

<td align="center" bgcolor="#FFFFFF">

$days.$week_day

</td>
}

Note: to compare numerical values we use == operator, while to compare strings we use eq operator.

Let's look back at the general structure we use to form the calendar:

going through the table with calendar
^days.menu{

going through columns in each row
^for[week_day](0;6){

^if($days.week_day){
^if($month.$week_day==$date.day){

different cell background, boldface font
}{

simple cell
}

Lesson 3. First step—news section

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

25Parser 3.4.3
}{

empty grey cell
}

}
}

This is not a simple block—here we use nested constructions. Still, it helps us understand the possibility to
combine different means to handle a specific task. A construction could be more graceful if we united
checking and coloring into a separate function to be called from within the loop. A similar solution was used in
Lesson 2. By doing so, we could make our code simpler and easier to read, but our main purpose here is to
show you how to combine several logical structures. You can improve the code on your own. Let it be your
home assignment.

If you want to be sure that the code works, you can create file test.html in directory /news/ and put there
a single line:

^calendar[]

Now open this page in your browser and enjoy yourself!

Let's sum it up,

What have we done?
We defined function making up calendar for the current month.

What have we learnt?
• file auto.p may be placed not only in root directory, but also in any other directory (but in this case,

functions contained in it will be accessible only within the directory it is in);
• variable�hash is an array used to associate some objects with other ones. In our case, objects were strings;
• static method calendar creates a table with calendar for the current month;
• loop for allows repeating some actions specified number of times.

What should we remember?
• along with methods of objects created with constructors of a class, there exist static methods. You can

access these methods directly without first creating an object;
• within loop for, we can refer to the counter as to a variable with specified name and get its current value.

As our code grows bigger, we should place comments for the code to be clearly understood. In Parser, every
line starting with # is regarded as a comment. So far, we didn't use comments, but as we step further and
further, placing comments becomes nearly vital. The following line is an example of a comment:

all this text will be ignored—this is a comment !!!

We urge that you place comments in your code! Ideally, your code should be self�descriptive for anyone who
reads it to understand the logic of the code and succession of actions. If you neglect it, you yourself may be
unable to read it after a while. Remember it!

What's next?
In the next lesson, we will teach our calendar to place links on dates and—what is most important—we will
learn how to work with forms and databases to create a full�blown news section.

Lesson 4. Second step—working with databases
First of all, you shouldn't be scared of the title, even if you have never dealt with databases (further referred
to as DB). You cannot do without them if you want to build a flexible, easy�to�tune�up site. By refusing to
work with databases you don't make your life easier but limit yourself, since databases provide many useful
opportunities. Trying to build a professional site without DB is like fishing without a fishing�rod: you surely can
catch a fish with your own hands, but why complicate your life? In short, if you have never dealt with DB,

Lesson 4. Second step—working with databases

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

26Parser 3.4.3
you'd better start it as soon as possible and use it in all your projects. OK, let's get off this little propaganda
and presume you now fully realize the necessity of working with DB.

Working with DB in Parser is easy. Parser has a good system of interacting with various DBMS (Database
Management Systems), such as MySQL, Oracle, PgSQL or any ODBC�based DBMS (that is MS SQL, MS
Access, etc.). Since Parser is an open�source project, one can add support for any DBMS by creating
appropriate driver). To work with DB, you don't have to possess any additional skills in Parser. All you need to
do is connect to a DBMS and use SQL queries that this DBMS supports. Parser may only replace apostrophes
for a relevant construction (that depends on DB type) as a "fool�proof," while the rest will be transferred as�is.

There is also a special construction used for long string literals. Oracle, PgSQL and, perhaps, some servers,
drivers to which may be created in the future, cannot handle long strings properly. If a string input, which is
transferred, for example, from form to database, is more than 2000 [Oracle 7.x] or 4000 [Oracle 8.x]
characters long, the server will report an error like "literal is too long." If you try to cheat by combining "2000
characters" + "2000 characters" there will be another error like "sum is too great." To store such constructions,
we usually use data type CLOB [Oracle] and OID [PgSQL] and, to make SQL commands simplest, we should
add a control comment which will be properly interpreted by a driver of SQL server:

insert into news text values (/**text**/'$form:text')

Word text in construction /**text**/ is the name of a column to which we input the string that follows.
There must be NO spaces inside it!

Of course, we will not try to cover in one lesson each and every opportunity Parser provides for working with
various types of DBMS. We will choose MySQL as the most widely used and, therefore, included as a usual
service by most of the hosting providers. Besides, it is free of charge and easy to master.

What are we going to store in our DB? Most obvious answer is news. The table with news must have the
following fields: a unique number of a news article in DB (to be generated automatically by DBMS), date
indicating when the news was added to DB (this we need to retrieve news related to a certain date), news
header and the text (news itself). Such a structure will be simple but effective.

We also need to decide how the news will get into DB. We can use DBMS command line for this purpose, but
it is not at all comfortable. If you are going to build a site for an intranet, you can use popular and simple
DBMS Microsoft Access. In this case, familiar interface and copy+paste will suit the purpose well and make
you a star among your colleagues for many years. We, however, propose a solution for Internet which is to
create a section for administration purposes which will include a page with HTML form to input news articles
right in your browser.

That's the task which is to be handled. Let's now see how we'll do it. For this lesson, you must have MySQL
DBMS installed (without it the whole lot of code will simply not work).

First of all, we should create a DB p3test, containing sole table news with fields (columns) id, date,
header and body:

id int not null auto_increment primary key

date date

header varchar(255)

body text

Now we create administration section, which will allow us to fill this DB with news articles. We will create
directory /admin/ and, inside it, file index.html, in which we put the following:

@greeting[]
News DB management

@body_additional[]
Adding news

Lesson 4. Second step—working with databases

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

27Parser 3.4.3
@body_main[]
$now[^date::now[]]

<center>
<form method="POST">
<p>
Date: <input name="date" value="${now.year}-${now.month}-${now.day}">

Header: <input name="header">
</p>
<p>Body:

<textarea cols="50" name="body" rows="5"></textarea>
</p>
<p>
<input type="submit" value="Add New" name="posted">
<input type="reset" value="Cancel">
</p>
</form>

#start processing
^if(def $form:date && def $form:header && def $form:body){

^connect[$connect_string]{
^void:sql{insert into news

(date, header, body)
values

('$form:date', '$form:header', '$form:body')
}
…news added

 }
}{
 …cannot add the news ^;—^; all form fields must be filled
}
</center>

You also need to add method auto before method main in root�directory auto.p. This method is used to
initialize global variables, i.e. the variables which will be accessible everywhere on the site. Within this method
we will set DB connect string, which we'll return to a bit later:

@auto[]
$connect_string[mysql://root@localhost/p3test]

As you see, the structure of this page is totally compliant with the general structure of all our pages. Elements
greeting, body (both parts of it), footer and header are all there. By the way, do you remember how we
make header and footer appear on this page? Yes, we call them from within function main located in root
auto.p.

We find unfamiliar constructions only in the main part. Let's examine it. In the beginning we see a usual HTML
form with current date included as a default value for field date. This we do to make it comfortable for users.
However, the line

${now.year}-${now.month}-${now.day}

seems strange. We use curly brackets here to get a string like "2001�11�06" (this is the format we'll use to store
dates in DB). If we don't place curly brackets here, Parser will report an error because it will not understand
what to do with this code. In such a construction (without curly brackets), i.e.:

$now.year-$now.month-$now.day

a hyphen will be regarded as a part of the name. Remember that you should separate the name of a variable
from a character that follows (dot, hyphen, semicolon, any letter or number, etc., except space character).
Thus, if you need a hyphen to immediately follow the variable value, you should write:

Lesson 4. Second step—working with databases

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

28Parser 3.4.3
${variable_name}-

and you will get:

variable_value-

Please, read the page with name�building rules carefully

We would best solve the problem with date by using here construction ^date.sql-string[]. You can try
to do it by yourself using Parser language reference. If you still can't cope with it—don't worry, we'll show you
how to do it in the next lesson.

Let's go on. If you have already dealt with HTML forms you know that forms send the data filled in by a visitor
to some scripts for further processing. In our case the script for processing data will be the page with the form
itself. We will need no additional scripts.

After closing tag </form>, we have data processing block. First, with the help of if, we check whether the
form fields are not blank. We might do without it, but we want to make something that will not be a mere
exhibit—we want our form to work perfectly in real�world conditions. In order to check, we have to get the
values of form fields. In Parser, we do it by simply referring to form fields as to static fields:

$form:field_name

The values thus retrieved we will check (whether they are blank or not) with the help of operator def and
logical "AND" (&&). We have also performed such a check in Lesson 3, but we didn't use def, as we checked
whether a table was empty or not. As you remember, a table has a numerical value, which is the number of its
rows, so any non�empty table is considered definite. Here, however, we must use def the same way we do to
check any other object. If a field of our form remained empty when submitted, the value of
$form:field_name will be considered undefined. Now, that we are sure that all the fields are filled in, we
must store them in DB. We do it by first connecting to DB and then sending an SQL query that will put the data
into table. Here is how we do it:

^connect[$connect_string]{
^void:sql{insert into news

(date, header, body)
values

('$form:date', '$form:header', '$form:body')
}
…news added

}

The most comfortable thing in Parser is that, except in some rare cases, you don't have to learn any
constructions to work with DB except those required by DBMS itself. Database session is contained within
operator connect which has the syntax:

^connect[protocol://connect string]{methods working with SQL queries}

For MySQL it will look like:

^connect[mysql://username:password@host/data_base]{…}

where curly brackets contain methods working with SQL queries. A query may return some data or nothing (in
our case, for example, we just add a new entry to DB and don't request any data). In Parser we use different
constructions for these two types of queries. In our case, the query is written like this:

^void:sql{insert into news
(date, header, body)

values
('$form:date', '$form:header', '$form:body')

}

Lesson 4. Second step—working with databases

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

29Parser 3.4.3
By the way, this is a static method of class void (remember the semicolon?).

The uncolored part of this construction is SQL commands. Everything is easy here. If you know SQL, you will
need nothing else but if you don't, we would again strongly recommend you to study it, as the benefits of
using SQL are numerous.

Do appreciate how simply and gracefully Parser interacts with DB! It provides a comprehensible access to
DBMS and (except in some rare cases) requires no additional knowledge. As you see, we also can add data
from our form to SQL queries using Parser constructions. The opportunities provided by this symbiosis are
unlimited. DBMS handles the problems connected with data processing (as it is designed for this very purpose
and suits it quite well), and we just use the results. The situation is just the same with any DBMS that you may
deal with.

Now we have a form allowing us to add records to our DB. Add several records to it. Now we're going to
retrieve them. Before we do it, we need to complete function calendar, which we created in previous lesson.
We should place links on dates so that the date could be passed to our script as a form field. Such a link will
then direct a user to news archive and retrieve news for the chosen date. Such an enhancement is not a hard
task; we'll just have to add some HTML to /news/auto.p. Within operator if we will surround
$days.$week_day with the anchor tags like this:

$days.$week_day

As a result, visitors will be able to use our calendar as a menu and select news related to a certain date.

Let's now deal with /news/index.html. We add to it the code:

@greeting[]
News page, Keep up to date!

@body_additional[]
<center>News Archive for Current Month:</center>

^calendar[]

@body_main[]
$now[^date::now[]]
<h1>NEWS</h1>
$day(^if(def $form:day){

$form:day
}{

$now.day
})
^connect[$connect_string]{

$news[^table::sql{select
 date, header, body
from

news
where

date='${now.year}-${now.month}-$day'
}]
^if($news){

^news.menu{
$news.date—$news.header

^untaint{$news.body}

}[
]
}{

Sorry, no news for selected period.
}

}

The structure is usual. In additional part of body we place calendar by calling ^calendar[] (remember: this
function is defined in /news/auto.p). Information part of the page is based on data retrieved from news

Lesson 4. Second step—working with databases

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

30Parser 3.4.3
database and related to the date user selected by clicking on respective link in our calendar (where�part of
SQL query). This is a second type of SQL query, which we use to retrieve data. Note that our query will result in
table which we'll use further on. We therefore need to create an object of class table.

Let's get to know another constructor of class table, which is based on SQL query. Its logic is similar to that
of ^table::load[]. The difference is that the source of data here is not a text file (such as we used to
create navigation menu) but SQL query result, i.e. data retrieved from DB:

$variable[^table::sql{SQL query}]

You can use this constructor only within operator ^connect[], that is when you have connection with DB
open, because SQL queries processing is handled by DBMS itself. The returned result will be a table, where
column names will be the same as the headers returned by SQL server as answer to the query.

A short digression: We recommend that you avoid constructions like select * from ... because an
outsider, who doesn't know the structure of the table addressed, will not understand what data will be
returned by DB. Such a construction can be used only when you test the script, but in final version, instead of
select *, you should always indicate exact names of table's fields which you want to be returned.

The rest of the code must be clear now: if checks whether the form field day (i.e. $form:day—the day user
selected from calendar generated by function calendar) is defined (def). We do it to figure out whether
the user has already chosen a day from calendar or has just come to news section following a link in navigation
menu on some other page. If $form:day is defined we just make it the value of variable day. Otherwise, the
value of variable day will be today. Then we connect to DB the same way we did when adding new records,
create table news and fill it with the news related to requested day (SQL�query result). After that, we use
method menu to go through the table row by row and output the news by referring to the content of its
fields. Everything is now clear except one additional operator used for a specific way of outputting the text of
the news:

^untaint{$news.body}

Here, you would better put aside the lesson for awhile and read the section on operators taint and
untaint to study the work of these operators closely. These are very important operators and you will most
probably need to use them quite often. Besides, a great deal of data processing is handled by Parser itself,
behind the curtain. This work isn't seen, but it's important that you understand its logic.

Have you read it? Let's go further, then. Why do we need untaint here? We have a form to manage news
records and we want to allow using HTML tags in our articles. It is prohibited by default, because some
malicious user can put some JavaScript on your page (which could, for example, redirect user's browser to
some other page). How will we do it? We will just mark this text as trustworthy by using operator untaint:

^untaint{text of news article}

In our case, as we don't specify the first parameter, the text will be untainted [as�is] (by default). That means
the data will be output as it is in DB.

At last we can relax a little: news section is now complete. We can add news and retrieve news related to the
date specified by user. Of course, we can improve some little things in our calendar. For example, we can
make it leave the days�to�come without links (since we can view only the news for past and present, not for
the future), to indicate chosen date in page header, or provide the opportunity to retrieve news of past
months (presently, we have only the current month available). This, however, you can do by yourself. The
knowledge you got in the previous lessons is quite enough to put these and other ideas, which you may have,
into practice. Use your creativity!

Let's sum it up,

What have we done?
We have built administration section to add news articles, enhanced the function responsible for making up a
calendar for the current month, filled news section with data retrieved from DB either based on user's date
selection or the current date.

Lesson 4. Second step—working with databases

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

31Parser 3.4.3

What have we learnt?
• the way Parser interacts with MySQL DBMS;
• two different ways of sending SQL queries (static method sql of class void and constructor sql of class
table);

• operator untaint.

What should we remember?
To work with DB in Parser is easy and clear, all you need to know is the constructions used by DBMS itself.
Don't deprive yourself of using databases in your work.

What's next?
Now, as the news section is complete, we are going to make a guestbook to keep track of our site's rating and
see whether the site needs certain enhancements.

Lesson 5. User�defined classes in Parser
In all previous lessons we manipulated classes and objects predefined in Parser, such as class table. This class
has its own methods, which we have widely used. The list of all its methods can be found in the reference.
Still, if a language doesn't extend beyond basic classes, it may finally become a serious limitation. To satisfy all
users' needs we allow them to create their own (user�defined) classes with methods and fields. In this lesson
we will create a new class of objects.

Actually, anything may be an object: forum, guestbook, different sections or even entire site. Here we have
approached the next stage of structuring—structuring at the level of objects, not methods. What did we do in
previous lessons? We just divided separate code pieces into methods and called them when necessary.
However, our script could be greatly improved if we included our own objects. For instance, we could create a
class forum and use its methods: "delete message," or "show all messages" and fields, such as "number of
messages". By this we provide a modular approach, which is significantly better than just using multiple
scattered and unrelated functions: all code and data (methods and fields) are assembled into one whole and
used with one certain object, which is "forum". In terminology used by document�oriented programming such
an approach is called 'encapsulation.' Moreover, having once created class forum for one project, we can use
it for different projects without changing anything in it.

Before we start explaining user�defined classes by the example of guestbook, which we are going to create
during this lesson, we would like to remind you of the logic of working with objects. First, we must create an
object of a certain class with the help of constructor and then call methods of an object of the class or the
fields of the object we have created. When working with user�defined classes, we do just the same, keeping
to the same sequence.

Let's again start with determining what we're going to do, since, as we'd say, clearly indicated target is half the
battle. Thus, before creating a class we must understand exactly what an object of the class will do (in other
words, what methods it will have). Let's assume our methods will: a) display messages in guestbook; b)
output a form, which a visitor will need to fill to add a new message; and c) process new message and add it
to guestbook. We will store our messages in DB—the same way we did with our news.

While it seems quite clear with methods of a class is quite clear, the essence of constructor remains rather
vague. As we know from our previous lessons, to start working with an object we must first create it. Let's use
a constructor to create a table with messages which will be further used by the method responsible for
showing them.

The task is now clear. Let's now implement it. The first thing we need to do is create table gbook in DB
p3test:

Lesson 5. User�defined classes in Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

32Parser 3.4.3
id int not null auto_increment primary key

author varchar(255)

email varchar(255)

date date

body text

Now we should get the idea behind such things in Parser as class MAIN and inheritance. As it has been already
said, a class is a unity containing all objects, their methods and fields. Class MAIN combines methods and fields
given in auto.p and the requested document (for example, index.html). Each level in directory tree
inherits methods given in auto.p files located in parent directories. All these methods, including those given
in requested HTML document become static functions of class MAIN while all variables in auto.p files and the
requested HTML document become static fields of class MAIN.

/
|__ auto.p
|__ news/
| |___auto.p
| |___index.html
| |___details/
| |_______ auto.p
| |_______index.html
|__contacts/ |
 |_______auto.p

 |_______index.html

As a user loads /news/details/index.html, class MAIN will be dynamically combined from of methods
given in root directory's auto.p, as well as auto.p files located in /news/ and /news/details/. Methods
given in /contacts/auto.p will not be accessible for pages in /news/ and its subdirectories.

It is now clear with MAIN, but, prior to creating a user�defined class, we should first learn how we can call
methods and refer to variables contained in class MAIN from within a user�defined class. Methods of class
MAIN are called as static functions:

^MAIN:method[]

while variables, which are fields of class MAIN, are referred to as static fields:

$MAIN:field

Let's get to practice now. We add to root directory's auto.p another method which we can use to connect to
DB and send an SQL query.

@dbconnect[code]
^connect[$connect_string]{$code}
connect_string is defined in method @auto[] and is#
$connect_string[mysql://root@localhost/p3test]

We put this method to root auto.p so that the DB server could be easily accessible from any page—methods
located in root auto.p will always be inherited. Note: we reserve place for an argument. In our case the
argument is one—code, with which we will submit SQL�queries. We can declare more arguments for a
method. In this case, we will separate them with semicolon.

Further, we create directory—for instance, classes—in which we will store our user�defined classes. In this
directory we create file gbook.p (we advise you to store user�defined classes in files with name extension
.p) and put into it to it the following code:

@CLASS

Lesson 5. User�defined classes in Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

33Parser 3.4.3
gbook

@load[]
^MAIN:dbconnect{

$messages[^table::sql{select author, email, date, body from gbook}]
}

@show_messages[]
^if($messages){

^messages.menu{
<table width="100%">

<tr>
<td align="left">$messages.author

^if(def $messages.email){
$messages.email

}{
No e-mail address

}
</td>
<td align="right">$messages.date</td>
</tr>

</table>
<table width="100%">
<tr>

<td>$messages.body</td>
</tr>
</table>

}[<table width="100%" border="0" bgcolor="000000" cellspacing="0">
 <tr><td> ^;</td></tr>

</table>]
}{

Guestbook is empty.
}

@show_form[]
<hr />

$date[^date::now[]]
<center>
<form method="POST">
<p>
Author[*]<input name="author">

E-mail <input name="email">

Text

<textarea cols="50" name="text" rows="5"></textarea>
</p>
<p>
<input type="submit" value="Send" name="post" />
<input type="reset" value="Cancel" />
</p>
</form>
</center>

@test_and_post_message[]
^if(def $form:post){

^if(def $form:author){
^MAIN:dbconnect{

^void:sql{insert into gbook
(author, email, date, body)

values (
'$form:author',
'$form:email',

Lesson 5. User�defined classes in Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

34Parser 3.4.3
'${date.year}-${date.month}-${date.day}',
'$form:text'

)}
}
$response:location[$request:uri]

}{
<center>Field 'author' must be filled in</center>

}
}

Look at the code. In first line we indicate that this is a file with user�defined class:

@CLASS

If you need to use some other user�defined class as a parent class, you should connect to it and declare it as a
base class. In this case, you will have such a construction:

@CLASS
name of the class

@USE
file of parent class

@BASE
name of parent class

In the line following @CLASS we write the name of our class—gbook. You should remember that Parser is
case�sensitive, so gbook and Gbook are different names. The name of the class doesn't have to be the same
as the name of the file it is stored in. Moreover, you can use any non�Latin characters for your names (for
example, Cyrillic).

Further in the code, we define methods of the class. We do it the same way we defined usual methods in
previous lessons.

The first method, load, will be constructor of our class. We should remember that the purpose of a
constructor is to create an object. Moreover, it can also declare variables and assign values to them. These
variables are fields of an object of user�defined class. In our case, by using constructor sql of class table,
we create a table. Note: in the methods of the new class we freely use methods of system classes and method
dbconnect of class MAIN:

@load[]
^MAIN:dbconnect{

$messages[^table::sql{select author, email, date, body from gbook}]
}

As it has already been mentioned, if we want to use methods of a class beyond it, we should specify what
class we use:

^class_name:method[properties]
$class_name:variable

and if the class we use is yet another user�defined class, we should add the following construction to the
beginning of the code:

@USE
file of parent class

Such a construction allows us to use module stored in another file. The description of how Parser works with
paths can be found in Attachment 1.

So, our new constructor will create table with messages connecting to a specified DB. Now that it is clear with
the constructor, we will need to define methods of the new class. Method show_messages outputs

Lesson 5. User�defined classes in Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

35Parser 3.4.3
messages contained in table gb created in method load. We go through the table, line by line, with the help
of method menu of class table, which we have already used previously. There is nothing new in other
methods, either:

show_form—outputs form to add a new message

test_and_post_message—checks if button post was clicked, if field author was filled in and, if all
conditions were met, adds a new entry to DB using method dbconnect defined in class MAIN.

By this we finish creating user�defined class gbook. All we need to do now is tell Parser on what page we are
going to use it. We do it by writing in the first line of /gbook/index.html:

@USE
/classes/gbook.p

Now we can create object of class gbook and use its methods within this page. We will do it in the main
information part:

@body_main[]
Parser3 Example: Guestbook

<hr />

$gb[^gbook::load[]]
^gb.show_messages[]
^gb.show_form[]
^gb.test_and_post_message[]

and, of course, we shouldn't forget about other parts
@greeting[]
Leave your mark on history…

@body_additional[]
Chronicles…

In this piece we use an object of newly created user class the same way we use any other object: we create it
by using constructor of the class and then call methods defined in the new class. See how gracious the
solution turned out to be: our code is clearly readable and, looking at this piece, we instantly understand what
it does. Everything related to our guestbook is located in a separate file where we list all of its opportunities. If
we need a new method to use with our guestbook, we will just need to add it to /classes/guestbook.p.
Everything can be easily enhanced and it doesn't take much to understand what to change and where, if we
need to.

In conclusion, it should be noted that we would better place methods like dbconnect somewhere beyond
class MAIN (so that MAIN wouldn't be overloaded with methods). Such a solution would also make the whole
project easier to read and understand. We can make methods of this class available by adding construction

@USE
…

wherever we'd need to use it.

Let's sum it up,

What have we done?
We have created a user�defined class and guestbook for our site based on the class we have
made.

What have we learnt?
• Class MAIN;

Lesson 5. User�defined classes in Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

36Parser 3.4.3
• how to create a user�defined class;
• how to pass arguments to a method.

What should we remember?
Classes are the "top level" of structuring. That is why we should always aim at dividing our code into classes. By
this, you can make the logic of our projects' work most comprehensible and our further work—most
comfortable.

What's next?
By this, we have finished our exemplary site. Of course, it is not perfect and shouldn't be used as it is now.
Before we place it in the Internet, you still have a couple of things to do: enhance our calendar in news section,
teach our guestbook to check whether messages posted by visitors are correct, etc., but we didn't target at
making up a full�scale site. We just wanted to show that Parser is an easy tool to increase your productivity.
Now, that you have acquired all basic skills required for full�range work, you just need to reinforce them. Now
you have all necessary knowledge to do the whole rest of work by yourself. Remember, "practice makes
perfect."

Good luck!

Lesson 6. Working with XML
<?xml version="1.0" encoding="windows-1251" ?>
<article>
 <author id="1" />
 <title>Lesson 6. Working with XML</title>
 <body>
 <para>Imagine, you are allowed to invent any tags
 with any attributes. That means, you can define
 by yourself what a tag or attribute that you
 invent means.</para>
 <para>Such a code will contain data, …</para>
 </body>
 <links>
 <link href="http://www.parser.ru/docs/lang/xdocclass.htm">Class
xdoc</link>
 <link href="http://www.parser.ru/docs/lang/xnodeclass.htm">Class
xnode</link>
 </links>
</article>

…but not the formatting. One person can handle preparing data and another—formatting. What they need to
do is just agree on the tags they are going to use and get down to work over the project... simultaneously.

This idea is no news. There were many template�processing libraries, and many developers created yet more
libraries of their own. Libraries were incompatible and totally dependent on scripting languages used, which
caused dissociation among developers and made an outsider spend lots of time and efforts on learning yet
another library.

Life goes on though, and now we have standards XML and XSLT, which do not depend on scripting language
chosen and allow us to fully implement the idea we have shaped in the beginning. We also have standards
DOM and XPath, which reveal yet more opportunities. All these standards are fully supported in Parser.

While working over this lesson, open a book describing XML and XSLT (the one you bought in the nearest
bookstore yesterday) and use it as a reference.

Let's see how we could transform the above XML�coded article to HTML. First, we place the above given code
into file article.xml and then create file article.xsl, where we define the tags we have invented:

<?xml version="1.0" encoding="windows-1251" ?>

Lesson 6. Working with XML

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

37Parser 3.4.3
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="article">
 <html>
 <head><title><xsl:value-of select="title" /></title></head>
 <body><xsl:apply-templates select="body | links" /></body>
 </html>
</xsl:template>

<xsl:template match="body">
 <xsl:apply-templates select="para" />
</xsl:template>

<xsl:template match="links">
 Related links:

 <xsl:for-each select="link">
 <xsl:apply-templates select="." />
 </xsl:for-each>

</xsl:template>

<xsl:template match="para">
 <p><xsl:value-of select="." /></p>
</xsl:template>

<xsl:template match="link">
 <xsl:value-of select="." />
</xsl:template>

</xsl:stylesheet>

The data and the transformation template are ready. Now we should create article.html, in which we
write:

input xdoc document
$sourceDoc[^xdoc::load[article.xml]]

transform xdoc document using template article.xsl
$transformedDoc[^sourceDoc.transform[article.xsl]]

output the result as HTML
^transformedDoc.string[
 $.method[html]
]

The code in the first line loads XML�file and gets its DOM�interpretation in sourceDoc. The construction is
like that loading a table—remember ^table::load[...]? Yet, this time we do load NOT a table (thus
getting an object of class table) but XML�document (and get an object of class xdoc).

The code in the second line makes input document subject to transformation according to the template
defined in article.xsl.

The code in the third line outputs the resulted document as HTML (parameter method with value html).

In this method, we can specify all parameters allowed for <xsl:output … />.
We also recommend that you specify "no indents" (parameter indent with value no: $.indent[no]) to
avoid widely�known problem with empty space in front of </td>.

Now, when accessing this page, a visitor will get the result of the transformation:

<html>

Lesson 6. Working with XML

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

38Parser 3.4.3
<head><title>Lesson 6. Working with XML</title></head>
<body>
<p>Imagine, you are allowed to invent any tags
 with any attributes. That means, you can define
 by yourself what a tag or attribute that you
 invent means.</p>
<p>Such a code will contain data, ...</p>
Related links:

xdoc class
xnode class

</body>
</html>

As you have probably noticed, tag <author ... /> was not defined, so the information on the author of
the article is not present in resulting HTML. Later, when you decide where you will store and output the data
on authors and how you will do it, you will just need to complete the template without changing articles'
content.

Note: if you don't want Net surfers to view your .xml and .xsl files, you should either store these files
beyond web�space (^xdoc::create[/../directory_outside_of_web_space/article.xml]) or
disallow access to these files by your web�server directives (an example of how to disallow access to .p files
can be found in "Appendix dedicated to installing Parser on Apache web�server").

Let's sum it up,

What have we done?
We have created a "building block" to be further used for retrieving information stored in XML, applying XSLT�
transformation, and outputting objects in HTML format.

What have we learnt?
• how to use class xdoc;
• how to load XML, create XSLT, and use it to transform XML and output objects of class xdoc as HTML.

What should we remember?
You should buy a book on XML and XSLT.

What's next?
You should read the book we've mentioned, experiment with examples it gives, and enjoy good standards.
You should also read about method postprocess and find a way to tune it up so that every access to XML�
file would output it as HTML.

Syntax

10.1Variables

Variables can store the following types of data:
• string;
• number (int/double);
• true/false;
• hash (associative array);
• class of objects;
• object of a class (user�defined class as well);
• code;
• expression.

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

39Parser 3.4.3
To use a variable, you don't have to declare it in advance.

Different types of data demand different brackets to be used while a variable is assigned:

$variable_name[string] assigns a string (an object of class string) or an object of some class;

$variable_name(expression) assigns a number or result of some mathematical
expression

$variable_name{code} assigns some code to be executed when the variable is referred to

To retrieve value stored in a variable, you should refer to the variable by name:

$variable_name—retrieves value stored in variable

Examples
Code Result

$string[2+2]
$string

2+2

$number(2*2)
$number

4

$i(0)
$code{$i}
$i(1)
$code

1

$i(0)
$string[$i]
$i(1)
$string

0

As a part of variable's name you may use:

...value stored in another variable:
$superman[value of superman variable]
$part[man]
$super$part
will return: value of superman variable

$name[picture]
${name}.gif
will return string picture.gif (but NOT field gif of object picture)

...result of some code:

$field.[b^eval(2+3)]

will return field b5 of object field.

10.2Hash (associative array)

Hash, or associative array, allows storing associations between string keys and some values. Hash is created
automatically—when a variable is assigned or a method is called—the following way:

$hash_name[
 $.key1[value]
 $.key2[value]
 . . .
 $.keyN[value]

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

40Parser 3.4.3
]

or

^method[
 $.key1[value]
 $.key2[value]
 . . .
 $.keyN[value]
]

You can also create an empty hash or a copy of another hash. See "Creating an empty hash or copying existing
hash".

To retrieve a value stored in a hash key use construction:

$hash_name.key

Hash allows building multi�level structures, for example, hash of hash where key values would be other
hashes. Example:

$name[
 $.key1_of_level1[$.key1_of_level2[value]]
 . . .
 $.keyN_of_level1[$.keyN_of_level2[value]]
]

10.3Object of a class

Creating object
^class::constructor[parameters]

Constructor of a class creates an object of this class and allows further using common fields and methods of
the class. For detailed description of constructors' parameters, please refer to respective chapter.

Note: the result of constructor's work is created object, common result of a method's work is ignored (doesn't
get anywhere).

Calling object
^class.method[parameters]

Calls method of the class the object belongs to. For detailed description of constructors' parameters, please
refer to respective chapter.
If object is not specified, this construction calls a method of the current class (if current class lacks the method
called, a method of base class will be called) or an operator. In case of identical names, operator will be
preferred.

Methods can be static and dynamic.

Dynamic method–code is executed within the scope of the object

Static method code is executed within the scope of the class itself, that is, deals with not a certain object
but the entire class (for example, classes MAIN, math, mail)

Value of an object's field
$object.field

Retrieves the value stored in object's field.

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

41Parser 3.4.3

Retreaves object's fields as a hash [3.4.0]
$h[^hash::create[$object]]

Creates a hash with object fields as keys.

Object's system field: CLASS
$object.CLASS–contains reference to the object's class

You may need this value to specify the scope of code's compilation (cf. "Process. Compiling and processing
string").

Object's class name: CLASS_NAME [3.2.2]
$object.CLASS_NAME–contains object's class name

Example:
$var[123]
$var.CLASS_NAME

This example print 'string'.

10.4Static fields and methods

Calling a static method
^class:method[parameters]

Calls a static method of the class.

Note: dynamic methods of a parent class are called the same way (Cf. Creating User�defined Class).

Value of static field
$class:field

Retrieves the value stored in static field of the class.

Assigning static field
$class:field[value]

Assigns value to static field of the class.

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

42Parser 3.4.3

10.5User�defined classes

A user class is defined in a file of such a format:

@CLASS
name_of_class

optional
@OPTIONS [3.3.0]
locals
partial
dynamic or static [3.4.1]

optional
@USE
file_with_parent_class

optional
user-defined class can't be based on system classes [3.4.0]
@BASE
name_of_parent_class

recommended way to name method-constructor of the class
@create[parameters]

other methods are defined
@method1[parameters]
…

Module can be linked (see "Linking modules") to any file, which will then be able to use the class defined here.
If unknown class was specified, the method autouse of class MAIN will be called and specified class name
will be passed to it as the only parameter. [3.4.0]

If @CLASS is not specified, the file will define a number of additional operators.

If method
@auto[]

is defined, it will be automatically called as a static method (so�called static constructor) each time the class is
loaded. It is used to initialize static fields of the class.

Note: result of the method's work is ignored, i.e. doesn't get anywhere.
Note: method @auto[] is not inherited . [3.4.1]

If method is defined to receive the parameter:
@auto[filespec]
In that parameter Parser will pass full name of file containing the method.

Created classes inherit methods of parent classes. Inherited methods can be redefined.

In case one user class must use another one as parent, the file with the parent class should be linked to it, and
parent class – declared as base (@BASE).

To use methods and fields of parent classes, the following constructions should be used:

^class:method[parameters]–to call a method of parent class (note: although the syntax of calling such
a method looks like the syntax of calling a static method, in fact, in case of dynamic method, the method of
parent class will be called dynamically). To refer to the nearest parent class (base class) you may use
constructions ^BASE::constructor[parameters] and ^BASE:method[parameters].

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

43Parser 3.4.3
Using @OPTIONS you can set additional class behaviour.
Thus option locals automatically declare all variables in all methods of this class as local. If this option specified
you must use system variable self for accessing to class or object's field.

With partial option you can allow future class modifications. If specified and you load new file with use
operator which contain the same class name and the same option, the methods from this file will be added to
previously loaded class instead of creating a new one with the same name. This option can be useful for
loading huge and seldom used methods to the class by demand.

With static and dynamic options you can specify the allowed methods' call types. All methods could be called
statically or dynamically by default which could be unsafe.

Note: trailing white�space characters in meta�comands @USE, @CLASS, @BASE, @OPTIONS will be ignored
[3.4.1]

Working with variables in static methods
Value of the variable is searched for in:
• the list of local variables;
• the current class or its parent classes.

The value will be assigned to already existing variable (see the search area given above), if it does exist.
Otherwise, a new variable (field) will be created within the current class.

Working with variables in dynamic methods
Value of the variable is searched for in:
• the list of local variables;
• the current object and its class;
• parent objects and their classes.

The value will be assigned to already existing variable (see the search area given above), if it does exist.
Otherwise, a new variable (field) will be created within the current class.

Note: try to avoid using fields of class beyond the methods of the class except simplest cases. We should try to
communicate with an object through its methods only.

Object's system field: CLASS
$class:CLASS–contains reference to the object's class

You may need this value to specify the scope of code's compilation (cf. "Process. Compiling and processing
string").

This reference can also be used to retrieve static fields of the class, for example:

@main[]
^method[$cookie:CLASS]

@method[storage]
$storage.field

As a result, value of $cookie:field be output.

Object's class name: CLASS_NAME [3.2.2]
$object.CLASS_NAME—contains object's class name

Example:
$var[123]
$var.CLASS_NAME

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

44Parser 3.4.3
This example prints 'string'.

10.6Methods and user�defined operators

@name[parameters]
body

@name[parameters][local;variables]
body

@static:name[parameters] [3.4.1]
body of class' method which can be only called statically (more details)

@name[*parameters] [3.4.1]
method's body which can accept valiable number of parameters

@name[param1;param2;*parameters] [3.4.1]
method's body which can accept valiable number of parameters

Method is a code block, which has name, accepts parameters, and returns result. Names of a method's
parameters are separated by semicolon. Method can also have local variables, which should be declared in
method's header after declaration of parameters. Names of local variables are also separated by semicolon.

Local variables are visible only within the operator or method they belong to and from within the operators or
methods they refer to (cf. $caller described further in the text).

While defining a method, you can use not only parameters and local variables but also any other names, thus
working with fields of a class or object. This will depend on how you called the method statically, or
dynamically.

In Parser, you can extend core set of operators, since methods of class MAIN are considered operators.
Important notice: operators are methods of class MAIN, but in contrast to other classes' methods, you can call
them from any other class by using their name only, i.e. instead of using sophisticated ^MAIN:include[…],
you can use just ^include[…].

Into the methods which can accept valiable number of parameters (such @name[*parameters]), all
excessive parameters are available as a hash with numeric keys.

Example:
@main[]
^call[a;b;c]

@call[p;*args][k;v]
p=$p
^args.foreach[k;v]{

$k=$v
}[^#0A]

Outputs:
p=a
0=b
1=c

System variable: self
All methods and operators have a local variable self. It contains reference to the current object; in static
methods, its content is the same is that of $CLASS.

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

45Parser 3.4.3
Example:
@main[]
$a[Static field ^$a of class MAIN]
^test[Method's parameter]

@test[a]
^$a - $a

^$self.a - $self.a

The code will output:

$a - Method's parameter
$self.a - Static field $a of class MAIN

System variable: result
All methods and operators have a local variable result. If any value is assigned to it, it will be considered the
result of the method's work. The value of result can be read and used in calculations.

Example:
@main[]
$a(2)
$b(3)
$summa[^sum[$a;$b]]
$summa

@sum[a;b]
^eval($a+$b)
$result[I won't say anything!]

In this case, the client will receive a string I won't say anything!, but not the result of addition of the
two numbers.

System variable: result, explicit declaration [3.1.5]
If result variable is explicitly declared, this means to Parser that it should ignore all whitespace characters in
method code and perceive as error any non�whitespace characrers, if those characters are not explicitly
assigned to result variable.

Example:
@lookup[table;findcol;resultcol;findvalue;notfound][result]
^if(^table.locate[$findcol;$findvalue]){

$table.$resultcol
}{

$notfound
}

In this case, the client will receive either a value from $resultcol column or $notfound value.
What important is there would be no whitespace characters returned (no line breaks, tabs or spaces).

System variable: caller
All methods and operators have local variable caller, which stores the method's or operator's "scope of the
call".

You can use it:
• to find out who called the method or operator. In this case you will need to use $caller.self;
• refer to—$caller.variable_name_to_refer—or assign

$caller.variable_name_to_assign[value]—a variable as if you were in the place where the
defined method or operator was called from.

For example, you need an operator which would be like system for, yet somewhat different from it. You can
create it by yourself, using an opportunity to change local variable with name sent to you within the scope

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

46Parser 3.4.3
of the call of your operator:

@steppedfor[name;from;to;step;code]
$caller.$name($from)
^while($caller.$name<=$to){

$code
^caller.$name.inc($step)

}

Now the call…

@somewhere[][i]
^steppedfor[i](1;10;2){$i }

…will output "1 3 5 7 9 ". Note: it is the local variable of method somewhere that is
changed.

Notice: You may need the opportunity to find out the scope of the call to specify the scope of code's
compilation (cf. "Process. Compiling and processing string".

System variable: locals, explicit declaration [3.3.0]
If locals variable is explicitly declared, this means to Parser that all variables used in the method are
declarated locally.
To access object or class variables you should use self or CLASS prefixes.

10.7Passing parameters

Parameters can be passed within different brackets and will then be processed different ways:

(expression) –value of parameter is calculated every time it is referred to from within the method

[code] –value of parameter is processed only once—before the method is called

{code} –value of parameter is processed every time it is referred to from within the method

An example to demonstrate difference between brackets:
@main[]
$a(20)
$b(10)
^sum[^eval($a+$b)]
<hr />
^sum{^eval($a+$b)}

@sum[c]
^for[b](100;110){

$c
}[
]

As you can see, in the first case the code was calculated only once–before method sum was called–and the
method received the result of this calculation–number 30. In the second case the code was executed every
time the parameter was referred to–that is why the result was different each time, depending on the
counter's value.

There can be many parameters or none. If you place many parameters inside single�type brackets, they can be
separated by semicolon. Any combination of different types of parameters is allowed.

For example, the construction...
 ^if(condition){when true;when false}
...is equal to...
 ^if(condition){when true}{when false}

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

47Parser 3.4.3

10.8Properties

@GET_name[]
code, returns value

@SET_name[value]
code, accepts new $value

@GET_DEFAULT[] [3.3.0]
@GET_DEFAULT[name] [3.3.0]
code, executed when non-existing field is accessed for reading

@SET_DEFAULT[name;value] [3.4.1]
code, executed when non-existing field is accessed for writing

@GET[] [3.3.0]
@GET[access type] [3.4.0]
code, executed when class/object is used in different calling contexts

You can define default getter (@GET_DEFAULT[])–special getter, which will be executed when non-existing
field is accessed for reading. The field name, which was accessed, will be available in method only one param.
Important: it is forbidden to work with default getter as with ordinary getter: if you try to write $DEFAULT you
will receive an error message.

You can also specify default setter (@SET_DEFAULT)–special setter, which will be executed when non�
existing fiels is accessing for writing. The field name, which was accessed and the written value will be
available in method's params.

User�defined classes may have special getter @GET[], which will be executed when class/object is used in
different calling contexts such as scalar context, expression, etc. The access type, which was used, will be
available in the method only param. The access type values are: def, expression, bool, double, hash,
table or file.

Note: in construction $a[$b] method @GET[] is not executed.

Methods named like that define "property", which one can use as an ordinary variable:
we write Parser executes

$name ^GET_name[]

$name[value] ^SET_name[value]

Note: if writing or reading property is not needed, corresponding method may be ommited.
Important: it is forbidden to have both properties and variables with same name.

Example: age and e�mail
Take a person. It is convenient to store it's birthday, but we often need to output the age. Person needs e�mail,
but one can forget to check its validity.

Let class a handle persons, its properties "age" and "e�mail" allow us to hide unnecessary details:
@USE
/person.p

@main[]
$person[^person::create[
 $.name[John Dow]
 $.birthday[^date::create(2000;6;3)]
]]
can change, but they check us
$person.email[john@dow.com]

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

48Parser 3.4.3
$person.name ($person.email), age: $person.age

Outputs:
John Dow (john@dow.com), age: 5
 (will be older with time)

It is now allowed to change person's age:
this will cause error!
$person.age(99)

It is not allowed to assign invalid e�mail values:
this will cause error!
$person.email[john#dow.com]

Definition of person class
Above example works with person class, one must define it and it's properties.
In web�space root create person.p file, put this code inside it:
@CLASS
person

@create[p]
$name[$p.name]
$birthday[$p.birthday]

"age" property
@GET_age[][now;today;celebday]
$now[^date::now[]]
$today[^date::create($now.year;$now.month;$now.day)]
$celebday[^date::create($now.year;$birthday.month;$birthday.day)]
numeric value of boolean expression: true=1; false=0
$result(^if($birthday>$today)(0)($today.year - $birthday.year -
($today<$celebday)))

"e-mail" property
@SET_email[value]
^if(!^Lib:isEmail[$value]){
 ^throw[email.invalid;Incorrect e-mail: '$value']
}
variable name must differ from property name!
$private_email[$value]

@GET_email[]
$private_email

Note: class Lib with method isEmail and other useful methods and operators: http://www.parser.ru/off�
line/examples/lib/Lib.zip.
Note: it is better to store classes in a separate folder and not to specify path when using them. See
$CLASS_PATH.

Example of class which is similar to table class and has additional functionality
@main[]
$t[^MyTable::create{a b
0a 0b
1a 1b
2a 2b
3a 3b}]

Object value in expression: ^eval($t)

^^t.count: ^t.count[]

Print content of the object: ^print[$t]

Syntax

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

49Parser 3.4.3

Copy object and print ^^c.count[]:
$c[^MyTable::create[$t]]
^c.count[]

Remove 2 lines starting with offset=1 and print content of the object:
^c.remove(1;2)
^print[$c]

Create new table-object based on MyTable and print ^^z.count[]:
$z[^table::create[$t]]
^z.count[]

@print[t]
^t.menu{$t.a=$t.b}[
]

Definition of MyTable class
@CLASS
MyTable

@create[uParam]
^switch[$uParam.CLASS_NAME]{

^case[string;void]{$t[^table::create{$uParam}]}
^case[table;MyTable]{$t[^table::create[$uParam]]}
^case[DEFAULT]{^throw[MyTable;Unsupported type $uParam.CLASS_NAME]}

}

method will return value in different calling contexts
@GET[sMode]
^switch[$sMode]{

^case[table]{$result[$t]}
^case[bool]{$result($t!=0)}
^case[def]{$result(true)}
^case[expression;double]{$result($t)}
^case[DEFAULT]{^throw[MyTable;Unsupported mode '$sMode']}

}

method will handle access to the "columns"
@GET_DEFAULT[sName]
$result[$t.$sName]

wrappers for all existing methods are required
@count[]
^t.count[]

@menu[jCode;sSeparator]
^t.menu{$jCode}[$sSeparator]

new functionality
@remove[iOffset;iLimit]
$iLimit(^iLimit.int(0))
$t[^t.select(^t.offset[]<$iOffset || ^t.offset[]>=$iOffset+$iLimit)]

Literals

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

50Parser 3.4.3

Literals

11.1String literals

In Parser, we can use any characters. The following characters have special meaning:

^ $; @
()
[]
{ }
" : #

To cancel special meaning of these characters you must precede them with character ^. For example, to get $
in the output, you will need to use ^$ in the code.

Besides, you can use character codes:
^#20 – equals to space character
^#XX – XX hex code of the character

11.2Numeric literals

Numeric literals can have the following possible forms:

1
-8
(integer)

1.23
-4.56
(fractional)

1E3 equals to 1000
-2E-6 equals to -0.000002
(so�called scientific notation, format: stagnatEexponent)

0xA8 equals to 168
(integer in hexadecimal code)

Note: case�insensitive.

11.3Logical literals

In Parser expressions we can use logical literals
true
 false

Example
$exception.handled(true)

11.4Literals in expressions

If a string contains spaces
or starts with digit, [3.1.5]
it must be put within quotation marks or apostrophes:

Example:
^if($name eq John){...}

Literals

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

51Parser 3.4.3
John is a string without spaces, so you don't have to put it within quotation marks or apostrophes.

^if($name eq "John Smith"){...}

This string contains spaces, and is therefore put within quotation marks or apostrophes.

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

52Parser 3.4.3

Operators

12.1Operators in expressions and their precedence

Operator Value Precedence Comment
() Grouping parts of expression 1 (Utmost)

! Logic operation NOT 2

~ Bitwise inversion (NOT) 3

+ Single plus 4

� Single minus 4

* Multiplication 5

/ Division 5 Note,

\ Integer division 5 when dividing by zero

% Modulus operator 5 you get error number.zerodivision.

+ Addition 6

� Subtraction 6

<< Bitwise left shift 7 Operands of all

>> Bitwise right shift 7 bitwise operators

& Bitwise operation AND 8 are implicitly

| Bitwise operation OR 9 converted

!| Bitwise operation XOR 10 into Int.

is Check type 11

def Is object defined? 11

in Is the current document in directory? 11

-f Does file exist? 11

–d Does directory exist? 11

== Equal 12

!= Not equal 12

eq Strings are equal 12

ne Strings are not equal 12

< Number less than 13

> Number greater than 13

<= Number less than or equal 13

>= Number greater than or equal 13

lt String is less than 13

gt String is greater than 13

le String is less than or equal 13

ge String is greater than or equal 13

&& Logical operation AND 14 second operand is not evaluated if first is FALSE

|| Logical operation OR 15 second operand is not evaluated if first is TRUE

!|| Logical operation XOR 16 (Lowest)

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

53Parser 3.4.3

def. Checking if object is defined

The operator checks if the object is defined and returns Boolean value (true/false). The check can be
performed on any object in Parser: table, string, file, object of user�defined class, etc.

def object
As undefined (not def) Parser regards: empty string, empty table, empty hash and code.

Example
$str[This is a defined string]
^if(def $str){
 String is defined
}{
 String is not defined
}

Important notice: To check if code or method is defined, use operator is, not def. Thus,
^if(def $hash.delete){-}{hash doesn't contain element delete}.

in. Checking if document is in directory

in "/directory/"

The operator checks if document is in directory and returns Boolean value (true/false).

Example
^if(in "/news/"){
 We're in news section
}{
 News section
}

�f and �d. Checking if a file or directory exists

-f filename—checks if specified file exists on disk
-d dirname—checks if specified directory exists on disk

The operators check if the file/directory exist in specified location and return Boolean value (true/false).

Example
^if(-f "/index.html"){
 there is a mainpage
}{
 there is no mainpage
}

is. Checking type

object is type

The operator checks if left operand is an object of specified type and returns Boolean value (true/false). It is
handy to use the operator in cases when a variable may contain a single value or a set of values (hash), as well
as to check if a method is defined.

type—name of type. It may be a system name (hash, junction, …), or name of user�defined class.

Simple type check
@main[]
$date[1999-10-10]
#$date[^date::now[]]

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

54Parser 3.4.3
^if($date is string){
 ^parse[$date]
}{
 ^print_date[$date.year;$date.month;$date.day]
}

@parse[date_string][date_parts]
$date_parts[^date_string.match[(\d{4})-(\d{2})-(\d{2})][]]
^print_date[$date_parts.1;$date_parts.2;$date_parts.3]

@print_date[year;month;day]
Working with date:

Day: $day

Month: $month

Year: $year

This example will check the type of variable $date and will either perform syntactical analysis or pass to
method print_date the fields of $date (if type is object of class date).

Checking if method is defined
The value of $method_name is also junction, that is why we should also use is and not def in this case.
@body[]
body

@main[]
Start
^if($body is junction){
 ^body[]
}{
 Method "body" is not defined!
}
Finish

Note: using operator is you can't check variables which contains code because of any address to such
variables execute the code.

Adding comments to parts of expressions

It is possible to add comments to parts of mathematical expressions. In this case, the comments must start
with # and extend until the end of the line of the file or the expression.

Example
^if(
 $age>=$MINIMUM_AGE # not too young
 && $age<=$MAXIMUM_AGE # and not too old
){
 Suitable age
}

Important notice: we do recommend you to add comments to parts of complex mathematical expressions.
You yourself may find it difficult to understand in a while.

12.2eval. Evaluating mathematical expressions

^eval(expression)
^eval(expression)[format string]

Operator eval evaluates a mathematical expression and outputs the result in the format you specify—with
appropriate format string (see "Format strings").

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

55Parser 3.4.3

Example
^eval(100/6)[%.2f]
will return: 16.67.

Important notice: we do recommend that you add comments to parts of complex mathematical expressions
(See "Adding comments to parts of expressions").

12.3Branch operators

Branch operators allow choosing which of two or more tasks is to be accomplished depending on the
situation.

There are two branch operators in Parser:

if—checks condition and follows one of the two branches;
switch—searches for a branch to satisfy specified string or value of specified expression.

if. Choose one of the two branches

^if(logical expression){code to implement if condition is "true"}

^if(logical expression){
 code to implement if condition is true
}{
 code to implement if condition is false

}

^if(logical expression 1){
 code to implement if condition 1 is true
}(logical expression 2){
 code to implement if condition 2 is true
}…(logical expression N){
 code to implement if condition N is true
}{
 code to implement if condition N is false
} [3.4.1]

First, operator evaluates specified expression. Then, it decides whether to implement the code or not (first
example), or whether to follow the first or the second branch (second example). There are no limitations
imposed on the code. For example, it may also contain one or more if�statements.

Important notice: we do recommend that you add comments to parts of complex mathematical expressions
(see "Adding comments to parts of expressions").

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

56Parser 3.4.3

switch. Choosing one of multiple branches

^switch[string to compare]{
 ^case[case1]{action for 1}
 ^case[case2]{action for 2}
 ^case[case3;case4]{action for 3 or 4}
 …
 ^case[DEFAULT]{default action}
}

^switch(mathematical expression){
 ^case(case1){action for 1}
 ^case(case2){action for 2}
 ^case(case3;case4){action for 3 or 4}
 …
 ^case[DEFAULT]{default action}
}

Operator switch compares string or result of mathematical expression with values provided in case list. If
compared values match it implements matching option's code. If values don't match, it implements code
provided by option DEFAULT (must be always in uppercase).

If option DEFAULT is not provided and none of the case�options matches the value, no code will be
implemented.

Example
^switch[$color]{

^case[red]{Stop and think of Eternity...}
^case[yellow]{You'd better get ready!}
^case[green]{Show them who's the Highway King!}
^case[DEFAULT]{You'd better not drive if you're color-blind...}

}

12.4Loop�operators

Loop is a process when a certain succession of actions is executed multiple times.

There are two loop�operators in Parser:

for—number of repetitions is limited by specified counter's values

and

while—number of repetitions depends on condition.

To avoid endless loops, Parser uses built�in endless loop detection mechanism. Any loop whose body is
implemented more than 20'000 times is regarded as endless.

break. Force finishing loop

^break[]

Operator break can be used inside of loop (for, while, menu, foreach) for its force finishing.
You can't use this operator outside of loop.

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

57Parser 3.4.3

continue. Finishing current loops` step

^continue[]

Operator continue can be used inside of loop (for, while, menu, foreach) for force finishing current
loops` step and going to next one.
You can't use this operator outside of loop.

for. Loop with specified number of repetitions

^for[counter](from;to){body}
^for[counter](from;to){body}[delimiter]
^for[counter](from;to){body}{delimiter}

Operator for repeatedly implements the body of the loop, going through counter's values from initial to
final. Every repetition automatically increments the counter's value by one.

Counter is the name of variable used as the loop's counter.

From and to, respectively, are initial and final values of the counter—mathematical expressions specifying the
scope of values assigned to the counter. If final value is less than the initial, the body of the loop will not be
implemented at all.

Delimiter is string or code to be implemented before every non�empty body, except the first.

Important notice: since the names of the counters can be repeated, we recommend declaring them as local
variables of the method which uses for loop.

You can force finish the loop using break operator or finish current step and go to next one using continue
operator. [3.2.2]

Example
^for[week](1;4){

News for week $week
}[
]

The example outputs references to weeks 1�4. After every string, it puts the newline tag.

while. Loop with condition

^while(condition){body}
^while(condition){body}[delimiter] [3.1.5]
^while(condition){body}{delimiter} [3.1.5]

Operator while repeats the body while condition is true. If provided condition is initially false, the body will
not be executed at all.

Delimiter is string or code to be implemented before every non�empty body, except the first.

You can force finish the loop using break operator or finish current step and go to next one using continue
operator. [3.2.2]

Example
<h2>TEN FAT SAUSAGES</h2>
$sausages(10)
^while($sausages > 0){
 <p>$sausages fat sausages sizzling in a pan

 $sausages fat sausages sizzling in a pan

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

58Parser 3.4.3
One went pop!

 and the other went bang!

 ^sausages.dec(2)
 There were $sausages fat sausages sizzling in a pan</p>
}[
]

12.5connect. Connecting to a database

^connect[connect string]{code}

Operator connect establishes connection to DB server. The code of the operator is processed by Parser within
current connection.

When used as a module to Apache or IIS) Parser caches connections to SQL�servers. In case a script attempts a
connection with the same connect string twice, Parser doesn't connect to SQL�server but takes result of SQL�
connection from cache, if connection is still valid.

CGI�version also caches connections, but for a single http request only. That is why you can certainly use such
constructions as:

^connect[connect string]{…first SQL query…}
^connect[connect string]{…second SQL query…}

There will not be two SQL connections. It is especially useful when a connection is needed only sometimes and
you cannot be sure you will always need it. In this case you may avoid doing it beforehand by doing it visually
multiple times and be sure that the connection will not be broken.

We use the following methods and constructors to perform SQL�query:

table::sql
string:sql
void:sql
hash::sql
int:sql
double:sql
file::sql

Note: to work with operator connect, you need to have an appropriately configured driver (see
Configuration).

Formats of connect string to be used with supported DB servers are described in appendix.

Example
^connect[mysql://admin:pwd@localhost/p3test]{

$news[^table::sql{select * from news}]
}

12.6use. Linking modules

^use[file]
^use[file;options] [3.4.3]

Operator use allows using a module from specified file. If path begins with symbol "/", it will be regarded as
path from Web�space root. In any other case, Parser will look for the module by relative path first and then if
nothing was found in directories specified in variable $CLASS_PATH in Configuration method.

Note: before version 3.4.1 Parser did not look for the module by relative path from the file with the processed
@USE/^use[] instruction.
Note: starting from version 3.4.3 the exception occurs in case of loading class if a class with the same name
was already loaded. It can be switched off by specifying a new $.replace(true) option.

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

59Parser 3.4.3
The following construction can be used to link modules, too:
@USE
filename 1
filename 2
…

The difference between these constructions lies in that @USE loads a module before a code is executed, while
operator use can be called right from the script's body.
For example:

^if(condition){
 ^use[module1]
}{
 ^use[module2]
}

Note: attempts to use a module which were already used would not cause re�read of that module.

We do recommend that you save the results of code's work by linking necessary modules with operator use
within the code of operator cache.

12.7cache. Caching results of code’s work

^cache[file]
^cache[file](number of seconds){code}
^cache[file](number of seconds){code}{error handler}
^cache[file][expiration date]{code}
^cache[file][expiration date]{code}{error handler}
^cache[] = expiration date [3.1.5]

Operator cache caches the string resulted from code's work. Subsequent calls then do not re�execute the
code, but only output cached result. It saves time and servers' resources during request processing.

We do recommend you to link modules (^use[…]) from within the code of operator cache instead of doing
it statically (@USE).
We also strongly recommend that you work also with DB (^connect[…]) within cache when possible, to
save your SQL�server's resources and increase your sites' productivity.

File is a name of cache�file. If this file exists and is not expired, its content will be sent to the client. If it
doesn't exist, the code will be executed and result will be saved in the file with specified name.

Number of seconds is time to store result of the code's work, given in seconds. If the number is zero, the
result is not saved and the file with previously cached result is deleted.

Expiration date is time, until which result of the code's work is considered valid. If the date is in the past,
the result is not saved and the file with previously cached result is deleted.

Code is the code, whose result is to be cached.

Error handler—here the error in code can be handled. In this respect the operator resembles try, see
section "Error handling". Unlike try, $exception.handled[cache] can be specified, which gives Parser
the command to handle the error in a special way: to get from file the expired content, earlier saved result
of code's work, ignoring the fact that the content has expired.

The cached file can be deleted by
^cache[file]

It is possible to use within the code commands to change the time for the result of the code's work to be
stored:
^cache(number of seconds)

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

60Parser 3.4.3
^cache[expiration date]

Minimum time for the code to be stored is used.

Current expiration date can be learned by
$expire_date[^cache[]]

Example
^cache[/data/cache/test1](5){

Press 'reload', changes every 5 seconds:^math:random(100)
}

Changing expiration time
^cache[/data/cache/test2](5){

Within cache code you found out
that the page shouldn't be cached: ^cache(0)

}

12.8process. Compiling and processing string

^process{string}
^process[scope]{string}
^process[scope]{string}[options]

String will be compiled and executed as code in Parser, within specified scope or current scope. Specified
scope can be an object or a class, but not method (this meaning if you process something inside your
method, the method`s local varuables will not available inside processed code).

This operator is useful when you need to store fragments of code or your own methods in files with extension
other than .html—and which therefore will not be processed by Parser by default—or in a DB.

Several options (hash) may be specified:
• $.main[a new name for main method, declared in code in string]
• $.file[a name of file, from which this string comes from]
• $.lineno(a line number in file, where this string cames from. may be negative)
• $.replace(true)–starting from version 3.4.3 the exception occurs in case of loading class if a class with

the same name was already loaded. It can be switched off by specifying a new $.replace(true) option.

Simple examples
^process{@extra[]

PS: you look really good…
}
Method extra will be added to the current class and you will be able to call it later on.

^process[$engine:CLASS]{@start[]
5… 4… 3… 2… 1… GO!

}
Method start will be added to user class engine.

$running_man[^man::create[Jack]]
^process[$running_man]{
 Name: $name

}
As the code is executed within the scope of object $running_man, it is able to use the object's field name
and output "Jack".

Include operator
@include[filename][file]
$file[^file::load[text;$filename]]

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

61Parser 3.4.3
^process[$caller.self]{^taint[as-is][$file.text]}[

$.file[$filename]
]
The code loads specified file and executes it within the scope of the current object/class when include was
called. File option allows us to specify the name of file, where this code were loaded from. In case there
would be some error, you would see this "file name".
Note: "scope of current call" does not include any local variables or parameters!

Complex example
It is often convinient to compile a code to some method, which name evaluated dynamically:
this is source code, note ^^
$source_code[2*2=^^eval(2*2)]
it is evaluated dynamically, that we need to create the "method1" method
$method_name[method1]
compiling source code, storing it to new method
^process{$source_code}[

$.main[$method_name]
]
…
later in code it can be called
^method1[]
This example would continue to work even if in $source_code there would be declared several methods,
because main option sets the name of main method.

12.9sleep. Delay of execution

^sleep(seconds)

Method postpone the program execution for specified number of seconds.

12.10rem. Adding comments

^rem{comment}

All code contained in the operator will not be executed. Operator is used to comment code blocks.

12.11External and internal data

While creating a script in Parser, we deal with two main types of data. One of them is part of code. The other
is incoming data received from HTML�forms, environment variables, files, and SQL�servers. Part of code is not
to be proofed. Yet, when the data is received from a form filled in by a visitor, for example, it is potentially
dangerous to output it as-is. Thus, we need to transform such data according to certain rules. The lion's
share of such transformations is performed by Parser automatically, on its own. For example, if Parser must
output data received from an HTML�form field, characters < and > contained in the input will be automatically
substituted by < and > respectively. Yet, sometimes we will need to allow outputting this type of data
to be output as-is, without any transformation.

The code created personally by the coder is regarded clean. All incoming data is considered tainted.

Parser code—code is created personally by the coder and is therefore not to be proofed;

$form:field—outputs data sent by user through HTML�form;

$my_table[^table::sql{sql-query}]—data is retrieved from DB.

As for $form:field, tainted data received from a form field will be automatically transformed and some
characters will be substituted according to the built�in table of replacements. After this, they will be regarded
as clean, not tainted. In other words, they will implicitly undergo operation untaint. Automatic
transformation will be employed at the moment the data is output. Thus, a data retrieved from an DB and

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

62Parser 3.4.3
assigned to $my_table will be transformed when this data is output (sent to browser, saved to file or DB).

Besides, there may be a situation when the data should be either not transformed at all or transformed
according to rules different from those used by default. For example, we allow a visitor to use HTML tags in
the input, for example, for additional text formatting. Yet, since it is potentially dangerous (for example, a
JavaScript submitted by user to guestbook may redirect other visitors' browsers to another site), Parser will by
itself make replacement of "undesirable" characters according to predefined rules. This problem can be solved
by using operator untaint.

untaint, taint, apply�taint. Transforming data

^untaint{code}
^untaint[transformation type]{code}
^taint[text]
^taint[transformation type][text]
^apply-taint[text] [3.4.1]
^apply-taint[transformation type][text] [3.4.1]

Parser enables automatic data transformations to protect your system against intrusion and the "default"
security level is high. It works even if your code contains no operators taint/untaint. If you interfere by
using these operators (especially for as-is transformations), you may increase the risk of security
vulnerability. Therefore, study the mechanism carefully before writing code.

Operator taint marks the text received as "needing transformation of a certain type". If transformation
type is unspecified, taint marks it as "tainted" (needing undefined transformation). Text marked "tainted"
is subject to the type of transformation applied to external text (coming from from field, database, file,
cookies, etc.).

Operator untaint executes the code received and marks "needing transformation of a certain type" the
tainted parts of the execution result (i.e. pieces that did not constitute part of the Parser code within the
document body, either external or marked "tainted" by the taint operator). It does not concern parts subject
to transformation of a certain type. If transformation type is unspecified, untaint marks the tainted pieces
of the execution result as as-is.

Text is marked for transformation to be performed later, when the apply-taint operator is called, the
document is outputted to browser, sent to SQL server, saved into a file, sent out through e-mail, etc.

Operator apply-taint applies inplace transformation to all tainted parts of the string. Parts within
undefined transformation type will be processed using specified transformation type (as-is by default).

For simplicity you can think about it as if Parser interprets external characters as ^taint[external
text], and text within the body as ^taint[optimized-as-is][typed text].

In some cases ^taint[transformation type][text] and ^untaint[transformation
type]{text} produce the same result. It happens when the whole text is tainted (for example,
$form:field). However, keep in mind that these operators have different default parameters, and
applying both without transformation types to a tainted text will create absolutely different results.

When outputting to browser, Parser automatically applies type optimized-html, and the code looks like
this:
^untaint[optimized-html]{typed code}

It means that if you write $form:field (not using taint/untaint) within the body, then even if
"?field=</html>" is called, the page shall not be "crippled" due to the closing tag </html> appearing
too early, because the content of $form:field is tainted and will be subjected to automatic optimized-
html transformation that replaces greater-than and less-than signs ('<' and '>') with entity references
'<' and '>'.
Other automatic transformations are performed in the same way. For instance, an SQL query containing
^string:sql{SELECT name FROM table WHERE uid = '$form:uid'} (again, not using

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

63Parser 3.4.3
taint/untaint) cannot be subverted by SQL injection using parameter "?uid=' OR 1=1 OR '",
because Parser shields the single quotes in the $form:uid received before sending the query to server.

Text within the body is also automatically transformed. Parser optimizes whitespace symbols: space,
tabulation characters and line breaks. If these symbols appear in a row, they are replaced with the first one
of them. In other words, if you type several spaces, they become only one before viewing. If you need to
disable this optimization (for example, when using <pre/>), do it explicitly by writing, for instance, the
following:

<pre>
^taint[as-is][
 I strode off the
 high cathedral
 top-most step like a
 miracle worker, or a
 Blessed
 passing the final exam for
 Saint. The
 city expanded at my
 feet. For one
 pico-second, I
 flew.
]
</pre>

In this case, you must use taint, as the typed characters are untainted and untaint would not produce
any effect.

Example
$clean[
]
the above expression is equivalent to this: $clean[^taint[optimized-as-
is][
]]

$tainted[^taint[
]]

Strings: ^if($clean eq $tainted){match}{do not match}

Tainted data—'$tainted'

Untainted data—'$clean'

This example shows that although comparison show that strings are equal, a browser will display different
results—the untainted string is not transformed, whereas '<' and '>' in the tainted one are replaced with '<'
and '>'.

Example
Example using ^^untaint.

<form>
<input type="text" name="field" />
<input type="submit" />
</form>

$tainted[$form:field]
Tainted data—'$tainted'

Untainted data—'^untaint{$tainted}'

Transformation type for untaint is specified inside square brackets. Here it is omitted, which means using
the default parameter as-is. Note that while untaint with unspecified transformation type is equivalent to
untaint with as-is transformation, taint has no transformation equivalent to taint with unspecified
type.

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

64Parser 3.4.3
Example
Example ^^taint.

$city[New York]
$city

As a result, contents of variable city are transformed into URI type. Cyrillic characters, white spaces and
other characters which must be encoded, would be replaced with hex entities and represented as %XX.

Example
Ouputting and saving user submitted data and generating XML

You specify: '$form:field'

^connect[$SQL.connect-string]{
^void:sql{INSERT INTO news SET (body) VALUES ('$form:field')}

}

$doc[^xdoc::create{<?xml version="1.0" encoding="UTF-8"?>
<root>

<data>$form:field</data>
</root>
}]

In this case, you need neither taint nor untaint, as all the necessary transformations will occur
automatically with transformation type optimized-html for output to browser, sql for sending data to
server and xml for generating xdoc object.
Note that you also do not need to write taint/untaint in SQL queries when saving data to a database
using administrative interface.

Example
Outputting user submitted data or data coming from a database (may contain
tags) to an edit form

^if(def $form:body){
 $body[$form:body]
}{
 ^connect[$SQL.connect-string]{
 $body[^string:sql{SELECT body FROM news WHERE news_id = $id}]
 }
}
<textarea>$body</textarea>

In this example optimized-html transformation will be performed automatically, because the data
submitted by the user or coming from a database are tainted. If the data contains any tags, they will not
affect the page. Remember that sequences of white spaces in $body will be optimized during output.

Example
Outputting data coming from a database containing administrator written tags

^connect[$SQL.connect-string]{
 $body[^string:sql{SELECT body FROM news WHERE news_id = $id}]
}
^taint[as-is][$body]

Here you should use taint specifying transformation type as-is (or untaint specifying this type), for the
tags included in the news code by the administrator need not undergo any transformation. This method must
not be used for the data submitted by visitors to the website such as guest book information, forum entries,
etc.

Example

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

65Parser 3.4.3
Outputting user submitted data or data coming from a database (may contain
tags) to an edit form keeping spacing symbols

^if(def $form:body){
 $body[$form:body]
}{
 ^connect[$SQL.connect-string]{
 $body[^string:sql{SELECT body FROM news WHERE news_id = $id}]
 }
}
<textarea>^taint[html][$body]</textarea>

In this case, use taint specifying transformation type html (or untaint with this type) to avoid crippling
the page and to disable optimization of space characters.

In the above examples operator taint was used only three times: for displaying administrator added tags
in database-derived text, for disabling optimization of spacing symbols, and for outputting query string
containing encoded characters (for example, white spaces and Cyrillic letters).
Otherwise, there was no need for taint/untaint, and Parser managed everything on its own.

Remember that it is better not to use these operators unless necessary.

You might have noticed that none of the examples used untaint. This raises the question of its
usefulness. Here are a couple of practical examples.

Firstly, it sometimes helps to reduce the number of the taint operators in the code. For example, when
outputting data to a multi-field form with spacing optimization disabled. In this case, you can apply
^untaint[html]{…} to the whole form instead of writing ^taint[html][…] for each textarea value.

Example
Outputting user submitted data or data coming from a database (may contain
tags) to a large edit for keeping spacing symbols

^if(def $form:title){
 $data[$form:fields]
}{
 ^connect[$SQL.connect-string]{
 $data[^table::sql{SELECT title, lead, body FROM news WHERE news_id =
$id}]
 }
}

^untaint[html]{
 <p>
 Heading

 <textarea name="title">$data.title</textarea>
 </p>
 <p>
 Announcement:

 <textarea name="lead">$data.lead</textarea>
 </p>
 <p>
 News

 <textarea name="body">$data.body</textarea>
 </p>
}

Secondly, you can use it to output xml to browser (for instance, for ajax, RSS, SOAP, etc.). In this situation
optimized-html is not appropriate, and you must enclose the code in ^untaint[optimized-xml]{…}
to ensure correct output.

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

66Parser 3.4.3
The transformation is replacement of some characters by others, according to built�in transformation tables.
The following types of transformation are available:

as-is
file-spec
http-header
mail-header
uri
sql
js
json [3.4.1]
parser-code [3.4.0]
regex [3.1.5]
xml
html

optimized-as-is
optimized-xml
optimized-html

Transformation table

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

67Parser 3.4.3
as-is no transformation

file-spec characters * ? " < > | are replaced with _XX, where XX is character's hex�code

uri characters other than numbers or lower/uppercase Latin letters as well as
characters _ - . " are replaced with %XX, where XX is a character's hex�code

http-header the same as URI

mail-header if charset is known (if not, upper/lowercase will not work), the fragment starting
with the eighth�bit first letter and until the end of the string will be represented in
such a way:
Subject: Re: parser3: =?koi8�r?Q?=D3=C5=CD=C9=CE=C1=D2?=

sql depending on SQL�server
for Oracle, ODBC and SQLite ' is replaced with ''
for PgSQL characters ' and \ are prefixed with \
for MySQL characters ' " and \ are prefixed with \, characters with codes 0x00
0x0A 0x0D are replaced with \0 \n \r

for transformation needed that code which made a transformation are located
inside ^connect[]{} operator.

js " is replaced with \"
' is replaced with \'
\ is replaced with \\
newline character is replaced with \n
character with code 0xFF is preceded by \

json characters " \ / are prefixed by \
newline character is replaced with \n
tab character is replaced with \t
characters with codes 0x08 0x0С 0x0D are replaced with \b \f \r
in case of non�UTF�8 output all unicode characters is replaced with \uXXXX

regex characters \ ^ $. [] | () ? * + { } - are prefixed by \

parser-code special characters are prefixed by ^

xml & is replaced with &
> is replaced with >
< is replaced with <
" is replaced with "
' is replaced with '

html & is replaced with &
> is replaced with >
< is replaced with <
" is replaced with "

optimized-as-is
optimized-xml
optimized-html

in addition to replacements, optimizes "white spaces" (space, tab, newline
characters).

multiple repetition of above�mentioned characters in a row is replaced with a single
one—that which goes first in the row

A number of taint transformations are made automatically. Thus, names of files and paths are always
automatically transformed with file-spec and when you write…

^file::load[filename]

…Parser executes…

^file::load[^taint[file-spec][filename]]

Similarly, when HTTP�headers and mail headers are defined, Parser executes http-header and mail-
header transformations respectively. During DOM�operations, text parameters of all methods are
automatically xml�transformed.

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

68Parser 3.4.3
Parser also performs a number of automatic untaint transformations:
type what is transformed

sql body of SQL�query

xml XML�code—while an object of class xdoc is created

optimized-html page output to browser

regex REGEX-patterns

parser-code body of operator process

12.12Error handling

To err is human. You should be ready for error messages to pop up unexpectedly from time to time.
Unfortunately, this is nearly inevitable. In the beginning, error messages will crop up rather often. At first, the
main reason for it will most probably be unbalanced brackets (remember—we mentioned text editors, which
support auto brace matching) or mistyping Parsers constructions.

If an error occurs, page processing will stop, all currently active SQL connections will be rolled back, and
method unhandled_exception, will be called. This method will receive information on the error as well as
the stack of calls that caused it. The method's work will result in a custom message to be output to a visitor.
The result of the page's code with error will not be output at all. The error will also be recorded in web�server's
error log.

Still, it is often desirable to intercept an error and do something useful with it. Let's assume you want to check
if XML code from an untrustworthy source is correct. In this case, you do not want processing to stop, quite
the contrary, you do expect an error of a certain type and want to handle it. Parser is glad to meet your wishes
and gives you a powerful tool: operator try.

During a complex data processing, an error may appear in a method which is called from another one, which
is, in its turn, is called from a third, and so on… How can we simply report and handle the error in this case? Use
operator throw, to report the error—and handle the error on the top level. In this case you will not have to
check it on all nesting levels of the method calls.

It is also very often that Parser itself or its system classes report errors. See "System errors".

try. Intercepting and handling errors

^try{the code whose errors get…}{…into this handler as $exception}
^try{the code whose errors get…}{…into this handler as $exception}{the code
which will be executed anyway} [3.3.0]

If an error occurred during processing the code, a variable $exception will be created and control over
processing will be handed over to handler.
If third parameter was specified, that code will be executed anyway regardless of unhandled exception.

$exception is such a hash:

$exception.type string, error type.
There is a number of system error types; a type can also be defined in operator
throw.

$exception.source string, error source (wrong filename, method's name, …)

$exception.file
$exception.lineno
$exception.colno

file containing source, line and column numbers in it

$exception.comment error comment, in English

$exception.handled true or false, flag "if error has been handled"
you will need to set the flag in the handler if you have handled the received
error

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

69Parser 3.4.3
Handler must report Parser if the error has been handled. For this purpose, it must set the flag but only for
the needed error types:
$exception.handled(true)

If handler has not set the flag, the error is considered unhandled and will be handed over to another
handler, if it exists.

If the error remains unhandled, method unhandled_exception is called. This method will receive
information on the error as well as the stack of calls that caused it. The method's work will result in a custom
message to be output to a visitor. The error will also be recorded in server's error log.

Example
^try{

$srcDoc[^xdoc::create{$untrustedXML}]
}{

^if($exception.type eq xml){
$exception.handled(true)
Invalid XML,
<pre>$exception.comment</pre>

}
}

throw. Reporting an error

^throw[type] [3.3.0]
^throw[type;source]
^throw[type;source;comment]
^throw[hash]

Operator throw reports error of type, which was caused by source, and provides comment.

This error can be intercepted and handled by using operator try.

Do not intercept errors only to provide a good�looking output. Let method unhandled_exception, do it all
instead, if no handler can be found. Besides, the method will add entries to server's error log, which you can
regularly look through to find problems that might crop up.

Example
@method[command]
^switch[$command]{

^case[add]{
adding…

}
^case[delete]{

deleting…
}
^case[DEFAULT]{

^throw[bad.command;$command;Wrong command $command, good are
add&delete]

^rem{
the next format also acceptable:
^throw[

$.type[bad.command]
$.source[$command]
$.comment[Wrong command $command, good are add&delete]

]
}

}
}

@main[]

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

70Parser 3.4.3
$action[format c:]
^try{

^method[$action]
}{

^if($exception.type eq bad.command){
$exception.handled(true)
Wrong command '$exception.source', in file $exception.file, in line

$exception.lineno.
}

}

The result of this code's work will be:
Wrong command 'format c:', in file c:/parser3tests/www/htdocs/throw.html, in
line 15.

We would like to remind you that visitors should not see errors' technical details, especially if such details
contain paths to files—it is both ugly and unsafe.
Outputting $exception.file is nothing but an example that you can use while debugging the site at
server, but by no means in production mode.

@unhandled_exception. Outputting unhandled errors

If an error has not been handled by any of the handlers (see operator try), Parser calls method
unhandled_exception, This method receives information on the error as well as the stack of calls that
caused it. The method's work results in a custom message to be output to a visitor. The error is also recorded in
server's error log.

The unhandled_exception message would look best if framed within usual layout of your site. It would be
also good if you check technical details and hide them from your visitors.

We recommend placing this method in your site's configuration file.

There is a way to prevent recording an error into error log. Only for particular errors set this flag on:
$exception.handled(true) [3.1.4]

Example
@unhandled_exception[exception;stack]
$response:content-type[
 $.value[text/html]
 $.charset[$response:charset]
]

<title>UNHANDLED EXCEPTION (root)</title>
<body bgcolor=white>

<pre>^untaint[html]{$exception.comment}</pre>
^if(def $exception.source){

$exception.source

<pre>^untaint[html]{$exception.file^($exception.lineno^)}</pre>

}
^if(def $exception.type){exception.type=$exception.type}
^if($stack){

<hr />
^stack.menu{

<tt>$stack.name</tt> $stack.file^($stack.lineno^)

}

}

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

71Parser 3.4.3

System errors

type Possible reason Description
parser.compile ^test[} Error in code compilation. Unbalanced

bracket, etc.
parser.runtime ^if(0) Method passed wrong number of

parameters or parameters are of wrong
type

parser.interrupted Page loading has been interrupted
(visitor cancelled page loading or browser
download timed out)

number.zerodivision ^eval(1/0), ^eval(1\0) or ^eval(1%0) Division by zero or Modulus by zero

number.format ^eval(abc*5) Attempt of converting nonnumeric data
into number

file.missing ^file:delete[skdfjs.delme] Specified file is missing

file.access ^table::load[.] Access to file is denied

file.read Problems while reading file

file.execute Error while executing external program

date.range ^date::create(1950;1;1) Date out of valid range

pcre.execute ^string.match[((\w)] Error while compile or execute PCRE
pattern

image.format ^image::measure[index.html] Image file is of wrong format (possibly,
extension does not match the content or
a file is empty)

sql.connect ^connect[mysql://baduser:pass@host/db]{} DB server cannot be found or is
temporarily unavailable

sql.execute ^void:sql{bad select} Error in SQL�query

xml ^xdoc::create{<forgot?>} XML code or operation with it contains
error

smtp.connect SMTP server cannot be found or is
temporarily unavailable

smtp.execute Error in sending message via SMTP
protocol

email.format Error in email address: address is absent
or contains unacceptable characters

email.send Error in executing mail�sending
application

http.host ^file::load[http://notfound/there] Server cannot be found

http.connect ^file::load[http://not_accepting/there] Server has been found but does not
accept the connection

http.response ^file::load[http://ok/there] Server has been found and connection
accepted, but generated incorrect
response status

http.status ^file::load[http://ok/there] Server returned response not equal to
200 (unsuccessful request processing)

http.timeout Loading a document from HTTP�server
was not completed in due time

сurl.host ^curl:load[
 $.url[http://notfound/there]
]

Server cannot be found

curl.connect ^curl:load[
 $.url[http://not_accepting/there]
]

Server has been found but does not
accept the connection

curl.status ^curl:load[
 $.url[http://ok/there]
]

Server returned response not equal to
200 (unsuccessful request processing)

curl.ssl ^curl:load[
 $.url[https://not_accepting/there]
]

Server has been found but does not
accept the connection because of
certificate problem

сurl.timeout Loading a document from HTTP�server
was not completed in due time

сurl.fail Other error while loading a document
using curl class.

Operators

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

72Parser 3.4.3

12.13User�defined operators

Sometimes it will seem to you that Parser lacks some operators. Parser allows you to define your own
operators which could be later used along with system operators.

Operators in parser are methods of class MAIN, By adding new methods into this class you extend built�in set
of operators.

Important notice: while defining an operator you may use not only local variables, but also global ones. By
doing so, you will assign and refer to fields of class MAIN.

User�defined operators may be defined in separate files without header @CLASS and be linked to relevant
sections of a site. If you define an operator (e.g. @include[]) in such a file, every call ^include[] will be
addressed to the user�defined operator.

CAUTION: If the name of the operator you define is same as a system operator's, user�defined operator will
be called. Using of system operator will then be impossible. We advise you to use as few user�defined
operators as possible. Consider using static methods of user�defined classes instead.

Creating classes and using their methods is far more comfortable than employing user�defined operators for
the same purpose. For example: there are several sections of the site and each one needs a help section. By
creating several files defining different classes, we can get methods of different classes bearing the same
name. While calling these methods as static ones, we can clearly see the relation between methods and
sections:

^news:help[]
^forum:help[]
^search:help[]

Examples
Place the code…
@default[a;b]
^if(def $a){$a}{$b}

…into file operators.p in root directory of your website.

After you have done it, you can link this module whenever you need additional operators. For example, write
such a construction in your root auto.p:

@USE
/operators.p

…and you will be able to use construction of type ^default[$form:name;Anonymous] not only on any
page, but also in any user�defined class.

Details can be found in section Defining methods and user operators.

Charsets
We are sure: existence of various charsets gives you as much pleasure as it does to us.

Parser has a built�in capability of transcoding documents from charset used on server into that used by visitor
and back. Parser transcodes:
• form data;
• strings (before transformation of type uri);
• text resulting from page processing.

You specify charset used in documents on server in field $request:charset.
You specify charset to be used in output in field $response:charset.
You should do it in one of auto methods.

Charsets

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

73Parser 3.4.3
We recommend you to specify result charset in HTTP�header content-type, so that a browser knew about
it and a visitor did not have to select charsets manually.
$response:content-type[

$.value[text/html]
$.charset[$response:charset]

]

Charsets to be used in email messages can be specified as different from that of the output, see
^mail:send[…].

While working with databases, you should specify connection settings in such a way that SQL query and
response data were in charset given in $request:charset, see Format of connect string.

A list of allowable charsets is defined in Configuration file.
Default charset for all documents is UTF-8.

Note: when transcoding from UTF�8 if some character is not specified in transcode table, a sequence
&#DDDD; is inserted instead. DDDD is decimal Unicode of that character.

Note: when transcoding to UTF�8 if some character is not specified in transcode table, a sequence %HH is
inserted instead. HH is hexadecimal code of that character. [3.1.4]

Note: charset's name is case insensitive.

Class MAIN. Processing request
Parser processes requested document in the following way:

1.
It reads, compiles, and initializes:
a) Configuration file;
b) all files named auto.p, which are searched for in root directory and down—through directories tree until
the directory where requested document belongs;
c) requested document itself.
Taken all together, they are what is defined as class MAIN.
Initialization is done by calling method auto in each of the loaded files. If method's definition contains a
parameter, the loaded file's name will be passed.
Note: result of method's work will not be output to a visitor.

2.
Then, method main of class MAIN is called without parameters.
This means that each of the mentioned files can define method main. The one which was defined last will be
called. This method's definition will override all other possible definitions.
The result of this method's work will be output to the visitor unless method postprocess is defined.
If file has not a single method defined, its whole content will be regarded as definition of method main.
Note: specifying $response:body[of non-standard response] redefines text received by a visitor.

3.
If class MAIN has method postprocess defined, result of method main's work is passed to it as the only
parameter and it is the result of postprocess that a visitor will get.
Thus, you get an opportunity of "extra polishing" the result of your code's work.

Simple example
If we add this definition into file auto.p located in your root directory…

@postprocess[body]
^if($body is string){
 ^body.match[Jack][g]{Jill}
}{

Class MAIN. Processing request

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

74Parser 3.4.3
$body
}

…it will result in replacing Jack with Jill in every page.
Do not forget to check the type, there can be some file.

Bool class
Objects of classes bool are logical values true and false.

Console class
This class is designed for creating simple interactive services, which work in text line�by�line mode.

These services can work with help of standard UNIX inetd program.

For example, it is possible to implement news�server (NNTP) in Parser.
Add a line like this to your /etc/inetd.conf file and restart inetd:
nntp stream tcp nowait unix_user /path/to/parser3 /path/to/parser3
/path/to/nntp.p

In nntp.p script code your NNTP server.
This would give people an ability to use it—nntp://your_server.

16.1Static field

Reading a line

$console:line

This construction reads a line from console.

Writing a line

$console:line[text]

This construction writes a line to console.

Cookie class
The class is designed for working with HTTP cookies.

17.1Static fields

Accessing

$cookie:name_of_cookie

Returns value of cookie with specified name.
Example:
$cookie:my_cookie

Retrieves and outputs value of cookie named my_cookie.

Note: cookies' values are accessible for reading immediately after they have been assigned.

Cookie class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

75Parser 3.4.3

Storing

$cookie:name[value]

$cookie:name[
 $.value[value]
 ...optional modifiers...
]

Saves cookie with specified name and specified value. In case of no optional modifiers were specified the
cookie will be stored for 90 days.
Note: cookies' values are accessible for reading immediately after they have been assigned.

Optional modifiers:
$.expires(number of days)—specifies how many days a cookie may be accessible (number of days
may be fractional, i.e. 1.5 will mean "one day and a half").
$.expires[session]—creates session cookie (cookie will be deleted when visitor closes all browser
windows);
$.expires[$date]—creates a cookie which may be accessible till specified date and time;
$.domain[doman name]—specifies domain from which the cookie may be accessed;
$.path[subsection]—specifies subsection of the site from which the cookie may be accessed.
$.httponly(true)—any key with bool value can be specified. In this case the http header will contains
this option without its value. You can use this for set httponly or secure options for example. [3.2.2]

Example
$cookie:user[Peter]

…will create cookie named user and assign value Peter to it. The cookie thus created will be stored on user's
disk for 90 days.

Example
$cookie:login_name[
 $.value[guest]
 $.expires(14)
]

…will create a cookie named login_name with value guest and store it a fortnight.

fields. All cookies

$cookie:fields

Such a construction returns hash with all cookies.

Example
^cookie:fields.foreach[name;value]{
 $name - ^if($value is "hash"){$value.value}{$value}
}[
]

…will output all cookies' names and their values.

Curl class
The class is designed for working with HTTP and HTTPS servers using libcurl library.

Curl class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

76Parser 3.4.3

18.1Static methods

version. Returning cURL library version

^curl:version[]

Returns string with libcurl version.

load. Loading file from HTTP/HTTPS server

^curl:load[]
^curl:load[options]

Loads file from HTTP or HTTPS server and returns it as an object of class file. Inside the curl session it could be
called without parameters.
All incoming cookies are stored in field cookies as a table with columns name, value, expires, max-
age, domain, path, httponly and secure. [3.4.3]

Example
$file[^curl:load[

$.url[https://store.artlebedev.ru/]
$.useragent[Parser3]
$.timeout(10)
$.ssl_verifypeer(0)

]]

session. Creating cURL session

^curl:session{code}

Method creates a curl session. The code of the method is processed by Parser within current session.
In one session common options sould be specified and a number of file loads could be executed. If the server
is supporded keep-alive, all requests within the session will be done in one HTTP�connection.

Example
^curl:session{

^curl:options[
$.url[https://store.artlebedev.ru/]
$.charset[UTF-8]
$.timeout(10)
$.ssl_verifypeer(0)

]

$file1[^curl:load[
$.url[https://store.artlebedev.ru/login/]
$.postfields[Username=^taint[uri][$form:login]&Password=^taint[uri]

[$form:password]&btnSubmit=^taint[uri][Enter]]
]]

$file2[^curl:load[]]
}

Curl class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

77Parser 3.4.3

options. Defining session's options

^curl:options[options]

Method must be called within a curl session only.
When the method sets options the following file loading calls within the session will use these options until
options will be redefined in file loading method or by another method's call.

Example
^curl:session{

^curl:options[
$.charset[UTF-8]
$.timeout(10)

]
…

}

18.2Class options

Any libcurl option could be specified as an option of methods ^curl:options[] and ^curl:load[]
(see documentation). Options' names should be written in lowercase and without the CURLOPT_ prefix.

Also, Parser supports the following options:
Option Default Description

$.library[/path/to/libcurl.so] unix � libcurl.so
win32 � libcurl.dll

Full path to dynamical libcurl library.

$.charset[charset] taken from HTTP response header Charset used in documents on remote
server. This charset is used to transcode
request string and response body.

$.response-charset[charset] Force specify charset for response body.

$.name[file name] NONAME.DAT The name of the created file object.

$.mode[text|binary] text The mode of the created file object.

$.content-type[CONTENT�TYPE] taken from HTTP response header The content-type of the created file
object.

Supported libcurl options in alphabetical order:

Curl class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

78Parser 3.4.3
Option Type libcurl analog Description

accept_encoding string CURLOPT_ACCEPT_ENCODING Compresion for the request: gzip or
deflate. (Old option name–encoding–is
also supported)

autoreferer int CURLOPT_AUTOREFERER Set the Referer header automatically.

cainfo string CURLOPT_CAINFO See libcurl documentation.

capath string CURLOPT_CAPATH See libcurl documentation.

connecttimeout int CURLOPT_CONNECTTIMEOUT The maximum time in seconds that you
allow the connection to the server to take.

connecttimeout_ms int CURLOPT_CONNECTTIMEOUT_MS The maximum time in milliseconds that
you allow the connection to the server to
take.

cookie string CURLOPT_COOKIE String with cookies (name1=content1;
name2=content2;...).

cookielist string CURLOPT_COOKIELIST String with cookies (read about
differences from cookie option in libcurl
documentation)

cookiesession int CURLOPT_COOKIESESSION See libcurl documentation.

copypostfields string, file CURLOPT_COPYPOSTFIELDS The body of POST-request.

crlfile string CURLOPT_CRLFILE See libcurl documentation.

customrequest string CURLOPT_CUSTOMREQUEST Custom HTTP method.

failonerror int CURLOPT_FAILONERROR Fail if HTTP code returned is equal or
larger then 400.

followlocation int CURLOPT_FOLLOWLOCATION Follow any Location header.

forbid_reuse int CURLOPT_FORBID_REUSE See libcurl documentation.

fresh_connect int CURLOPT_FRESH_CONNECT Next transfer will use a new connection by
force.

http_content_decoding int CURLOPT_HTTP_CONTENT_DECODING See libcurl documentation.

http_transfer_decoding int CURLOPT_HTTP_TRANSFER_DECODIN See libcurl documentation.

httpauth int CURLOPT_HTTPAUTH HTTP-authorization method
(CURLAUTH_NONE = 0,
CURLAUTH_BASIC = (1<<0),
CURLAUTH_DIGEST = (1<<1),
CURLAUTH_GSSNEGOTIATE = (1<<2),
CURLAUTH_NTLM = (1<<3),
CURLAUTH_DIGEST_IE = (1<<4),
CURLAUTH_NTLM_WB = (1<<5),
CURLAUTH_ONLY = (1<<31),
CURLAUTH_ANY =
(~CURLAUTH_DIGEST_IE),
CURLAUTH_ANYSAFE =
(~(CURLAUTH_BASIC|CURLAUTH_DIG
EST_IE))).

httpget int CURLOPT_HTTPGET Use GET HTTP method.

httpheader hash CURLOPT_HTTPHEADER HTTP-headers.

httppost hash CURLOPT_HTTPPOST Multipart/formdata HTTP POST to be
made to pass data on to the server.

httpproxytunnel int CURLOPT_HTTPPROXYTUNNEL Tunnel all operations through a given
HTTP proxy.

ignore_content_length int CURLOPT_IGNORE_CONTENT_LENGTH Ignore the Content-Length header. This is
useful for Apache 1.x which will report
incorrect content length for files over 2GB.

interface string CURLOPT_INTERFACE Interface name to use as outgoing
network interface.

ipresolve int CURLOPT_IPRESOLVE 1–use IPv4 (default), 2–use IPv6.

issuercert string CURLOPT_ISSUERCERT Filename holding a CA certificate.

keypasswd string CURLOPT_KEYPASSWD The password required to use the private
key.

Curl class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

79Parser 3.4.3
localport int CURLOPT_LOCALPORT Local port.

low_speed_limit int CURLOPT_LOW_SPEED_LIMIT The transfer speed in bytes per second
during low_speed_time.

low_speed_time int CURLOPT_LOW_SPEED_TIME The maxinum time in seconds that the
transfer should be below the
low_speed_limit for the library to consider
it is too slow and abort.

maxconnects int CURLOPT_MAXCONNECTS The maximum amount of simultaneously
open connections.

maxfilesize int CURLOPT_MAXFILESIZE If the file requested is larger than this
value, the transfer will not start.

maxredirs int CURLOPT_MAXREDIRS Maximum number or redirects.

nobody int CURLOPT_NOBODY Use HEAD method.

password string CURLOPT_PASSWORD Password.

port int CURLOPT_PORT Port.

post int CURLOPT_POST Use POST method.

postfields string, file CURLOPT_POSTFIELDS The body of POST-request.

postredir int CURLOPT_POSTREDIR See libcurl documentation.

proxy string CURLOPT_PROXY Proxy-server address.

proxyauth int CURLOPT_PROXYAUTH Authorization type (see httpauth).

proxyport int CURLOPT_PROXYPORT Proxy-server port.

proxytype int CURLOPT_PROXYTYPE Proxy type (CURLPROXY_HTTP = 0,
CURLPROXY_HTTP_1_0 = 1,
CURLPROXY_SOCKS4 = 4,
CURLPROXY_SOCKS5 = 5,
CURLPROXY_SOCKS4A = 6,
CURLPROXY_SOCKS5_HOSTNAME =
7).

proxyuserpwd string CURLOPT_PROXYUSERPWD Proxy-server user name and password.

range string CURLOPT_RANGE The specified range you want.

referer string CURLOPT_REFERER Referer header.

ssl_cipher_list string CURLOPT_SSL_CIPHER_LIST See libcurl documentation.

ssl_sessionid_cache int CURLOPT_SSL_SESSIONID_CACHE Enable or disable SSL session-ID
caching.

ssl_verifyhost int CURLOPT_SSL_VERIFYHOST Verifies that the server cert is for the
server it is known as.

ssl_verifypeer int CURLOPT_SSL_VERIFYPEER Verifies the authenticity of the peer's
certificate.

sslcert string CURLOPT_SSLCERT File name of your certificate.

sslcerttype string CURLOPT_SSLCERTTYPE SSL-certificate type.

sslengine string CURLOPT_SSLENGINE See libcurl documentation.

sslengine_default string CURLOPT_SSLENGINE_DEFAULT See libcurl documentation.

sslkey string CURLOPT_SSLKEY File name of your private key.

sslkeytype string CURLOPT_SSLKEYTYPE SSL-key type.

stderr string CURLOPT_STDERR Redirect stderr into specified stream.

timeout int CURLOPT_TIMEOUT Timeout in seconds.

timeout_ms int CURLOPT_TIMEOUT_MS Timeout in miliseconds.

unrestricted_auth int CURLOPT_UNRESTRICTED_AUTH Continue to send authentication when
following locations, even when hostname
changed.

url string CURLOPT_URL URL.

useragent string CURLOPT_USERAGENT User-Agent header.

username string CURLOPT_USERNAME User name.

userpwd string CURLOPT_USERPWD User name and password.

verbose int CURLOPT_VERBOSE Display a lot of verbose information about
its operations into stderr.

Date class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

80Parser 3.4.3

Date class
Class date is designed for working with dates. Possible variants of using it include: calendars, various checks
based on dates, etc.

Values may range from 01/01/1970 to 01/01/2038.

Do not forget that we have different gaps and overlaps: many countries have so�called Daylight Saving Time,
when clock is set ahead (in spring) or back (in autumn) one hour.
For example, in Moscow, there cannot be "02:00, 31 March 2002," while "02:00, 27 October 2002" can be
twice.

Numeric value of object of class date equals to the number of days from EPOCH (00:00:00, 1 January 1970,
UTC) to the date specified in the object. This feature is useful when you want to get a relative date, e.g.:

checking if the file was updated more than a week ago
^if($last_update > $now-7){
 new
}{
 old
}

The number of days can be fractional, e.g. a day and half is equal to 1.5.

The class usually operates local date and time. Still, you can get date and time in arbitrary time zone (see
^date.roll[TZ;…].

To communicate between computers that are in different time zones it is convinient to exchange values of
date/time which do not depend on timezone—UNIX format, which is number of seconds passed since EPOCH,
is very convinient here.

Unix format can be used in JavaScript and several other scripting languages that work in browser.

Parser fully supports work with UNIX date format.

19.1Constructors

create. Relative date

^date::create(number of days since EPOCH)

Constructor with only one parameter is designed for specifying relative date values. Having object of class
date, one can make up a new object of the same type, whose value will be shifted with respect to the initial.

Example
$now[^date:now[]]
$date_after_week[^date::create($now+7)]

The example creates a date to come a week after the current.

Parameter of the constructor does not have to be an integer number.

$date_after_three_hours[^date::create($now+3/24)]

Date class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

81Parser 3.4.3

create. Arbitrary date

^date::create(year;month)
^date::create(year;month;day)
^date::create(year;month;day;hour;minute;second)

The constructor creates an object of class date containing value of an arbitrary date accurate to a second.
Year and month are obligatory parameters, while day, hour, minute, and second are optional parameters.
If these are not specified, the day value will be set to 1, while hours, minutes, and seconds—to 0.

Example
$year_2000_start[^date::create(2001;12;31;23;55)]

As a result, the code will create an object of class date, whose fields' values will contain time for year 2000 to
begin.

create. Date and time in standard DBMS format

^date::create[year]
^date::create[year-month]
^date::create[year-month-day]
^date::create[year-month-day hour]
^date::create[year-month-day hour:minute]
^date::create[year-month-day hour:minute:second]
^date::create[year-month-day hour:minute:second.millisecond]
^date::create[hour:minute]
^date::create[hour:minute:second]

Creates an object of class date, containing value of an arbitrary date and/or time accurate to a second.
Obligatory parameters are year or hour and minute, while month, day, hour, minute, second and
millisecond are optional. If these are not specified, day value will be assigned 1 or current day's value,
while hour, minute, and second will be assigned 0.
Note: millisecond value is ignored.

This feature is useful if you retrieve a date from DB, since the query will return you values of fields with date
or time, or both date and time as strings.

Example
articles created/updated 3 days ago and later are "new"
$new_after[^date::now(-3)]
$articles[^table::sql{select id, title, last_update from articles where …}]
^articles.menu{
 $last_update[^date::create[$articles.last_update]]
 $articles.title
 ^if($last_update > $new_after){new}

}

Note for Oracle users: to get date and time in convenient format, specify the format of date and time in
server connection string, as recommended in Appendix 3.

Date class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

82Parser 3.4.3

create. Copying existing date

^date::create[date object]

The constructor copy an existing object of class date.

Example
$now[^date::now[]]
$dt[^date::create[$now]]
^dt.roll[month](-1)

The example creates a date to come a month before the current.

now. Current date

^date::now[]
^date::now(shift in days)

Constructor creates object of class date, containing value of the current date accurate to a second, using
server's system time. If shift in days is specified, the date will be shifted a specified number of days.

The constructor uses local time of the server where Parser works. To find the time in another time zone, use
^date.roll[TZ;…].

Example
$now[^date::now[]]
$now.month

As a result, the code will create an object of class date containing current date's value and output the number
of current month.

today. Current date

^date::today[]

Constructor creates object of class date for today's midnight (00:00:00), using server's system time.

The constructor uses local time of the server where Parser works.

Example
$today[^date::today[]]
^today.sql-string[]

unix�timestamp. Date and time in UNIX format

^date::unix-timestamp(date_time_in_UNIX_format)

Constructor creates object of class date, containing value, corresponding to passed numerical value in UNIX
format (see also brief description).

19.2Fields

By referring to the fields of objects of class date, you can retrieve the following values:

$date.month month
$date.year year
$date.day day
$date.hour hours

Date class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

83Parser 3.4.3
$date.minute minutes
$date.second seconds
$date.weekday weekday, i.e. number of day in a week (0 = Sunday, 1 = Monday, etc.)
$date.week week number in year (according to ISO 8601 standard) [3.1.5]
$date.weekyear year for this week (according to ISO 8601 standard) [3.2.2]
$date.yearday year day (0 = January 1, 1 = January 2, etc.)
$date.daylightsaving 1 � Daylight Saving Time, 0 � standard time
$date.TZ time zone; contains the value, if the date was ^date.roll[TZ;…]

Example
$date_now[^date::now[]]
$date_now.year

$date_now.month

$date_now.day

$date_now.hour

$date_now.minute

$date_now.second

$date_now.weekday

As a result, an object of class date will be created, containing current date, and the value of:

year
month
day
hour
minute
second
weekday

…will be output.

19.3Methods

gmt�string. Converting date to string in RFC 822 format

^date.gmt-string[]

This method convert date to string in RFC 822 format (Fri, 23 Mar 2001 09:32:23 GMT).
Usually you don't need to do anything and Parser convert date to such string automatically (for example
when you set HTTP�response header: $response:expires[^date::now(+1)]). But somethime (when
you generate RSS feed for example) this method can be usable.

last�day. Getting last day of month

^date.last-day[]

The method return last day of month.

Example
$date[^date::create(2008;02;01)]
^date.last-day[]

Will return 29

Date class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

84Parser 3.4.3

roll. Shifting date

^date.roll[year](shift)
^date.roll[month](shift)
^date.roll[day](shift)
^date.roll[TZ][new time zone]

This method increases/decreases values of fields year, month, and day of objects of class date.

You can also get date/time stored in an object of class date in another time zone by specifying system name
of a new time zone. For the list of these names, please see your system documentation (search for:
"Environment variable TZ").

Example of shifting a month
$today[^date::now[]]
^today.roll[month](-1)
$today.month

In this example, we assign variable $today the value of current day and then decrease the number of the
current month by one. As a result, we get the value of the previous month.

Example of shifting time zone
@main[]
$now[^date::now[]]
^show[]
^show[Moscow;MSK-3MSD]
^show[Amsterdam;MET-1DST]
^show[London;GMT0BST]
^show[New York;EST5EDT]
^show[Chicago;CST6CDT]
^show[Denver;MST7MDT]
^show[Los Angeles;PST8PDT]

@show[town;TZ]
^if(def $town){
 $town
 ^now.roll[TZ;$TZ]
}{
 Server local time
}

$now.year/$now.month/$now.day, $now.hour hrs $now.minute mins<hr />

sql�string. Getting date in DBMS�style format

^date.sql-string[]
^date.sql-string[datetime|date|time] [3.4.2]

Without options or with option datetime the method transforms the date into YYYY-MM-DD HH:MM:SS
format, used by DBMS for storing dates. Using this method you can add date values to DB without any
additional transformations.
If called with option date the method transforms the date into YYYY-MM-DD format.
If called with option time the method transforms the date into HH:MM:SS format.

Example
$now[^date::now[]]
^connect[connect string]{

^void:sql{insert into access_log (
access_date

) values (

Date class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

85Parser 3.4.3
'^now.sql-string[]'

)}
}

We get string of format '2001-11-30 13:09:56' with current date and time and at once place it into a DB
field. Without this method at hand, we would have to put together the needed strings manually.
Note: the method doesn't form the apostrophes—you should add them by yourself.

unix�timestamp. Converting date and time to UNIX format

^date.unix-timestamp[]

Converts date and time to value in UNIX format (see also brief description).

19.4Static methods

calendar. Creating calendar for specified week

^date:calendar[rus|eng;year;month;day]

The method makes up a table with calendar for a week of specified month of the year. Parameter day is
used to specify the week. Parameter rus|eng is used to specify calendar's format. In format rus, the week
starts with Monday, whereas in eng—with Sunday.

Example
$week_of_month[^date:calendar[eng](2001;11;30)]

As a result, variable $week_of_month will be assigned a table with calendar for the week containing 30
October 2001. The table's format will be:

year month day weekday

2001 11 25 00

2001 11 26 01

2001 11 27 02

2001 11 28 03

2001 11 29 04

2001 12 30 05

2001 12 01 06

calendar. Creating calendar for specified month

^date:calendar[rus|eng](year;month)

The method makes up a table with calendar for specified month of the year. Parameter rus|eng is used to
specify calendar's format. In format rus, the week starts with Monday, whereas in eng—with Sunday.

Example
$calendar_month[^date:calendar[eng](2005;1)]

As a result, variable $calendar_month will be assigned a table with calendar for January 2005:

Date class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

86Parser 3.4.3
0 1 2 3 4 5 6 week year

01 53 2004

02 03 04 05 06 07 08 01 2005

09 10 11 12 13 14 15 02 2005

16 17 18 19 20 21 22 03 2005

23 24 25 26 27 28 29 04 2005

30 31 05 2005

Method's work results in a new object of class table with columns 0…6 plus columns week and year
containing, respectively, number of week according to standard ISO 8601 and year it belongs to.

last�day. Getting last day of month

^date:last-day(year;month)

The method return last day of month.

Example
^date:last-day(2008;2)

Will return 29

Double, Int classes
Objects of classes double and int are real and integer numbers. These may result from calculations or
transformations, or be specified by user. Numbers falling within the range of class double are those with the
floating point. The scope of values depends on platform, yet, as a rule, the scopes are

for double from 1.7E-308 to 1.7E+308

for int from -2147483648 to 2147483647

Class double usually has 15 significant digits and doesn't guarantee preservation of numbers in the last
orders. Precise number of significant digits depends on the platform you use.

20.1Methods

format. Outputting number in specified format

^name.format[format string]

The method outputs variable's value in specified format (see Format Strings).

When you output number without format, simply:
$name
Parser for numbers with zero fraction part does this:
^name.format[%.0f] [3.1.5]
for others that:
^имя.format[%g]

Examples
Code…

$var(15.67678678)
^var.format[%.2f]

Double, Int classes

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

87Parser 3.4.3
…will return: 15.68

Code…

$var(0x123)
^var.format[0x%04X]

…will return: 0x0123

inc, dec, mul, div, mod. Simple operations on numbers

^name.inc[]
^name.inc(number)

– increases variable's value by 1 or number

^name.dec[]
^name.dec(number)

– decreases variable's value by 1 or number

^name.mul(number) – multiplies variable's value by number

^name.div(number) – divides variable's value by number

^name.mod(number) – puts into variable the modulus of its value division by number

Example
Code…

$var(5)
^var.inc(7)
^var.dec(3)
^var.div(4)
^var.mul(2)
$var

…will return 4.5 and is equal to construction: $var((5+7-3)/4*2).

int, double, bool. Transforming objects into numbers or bool

^name.int[] or ^name.int(default)

^name.double[] or ^name.double(default)

^name.bool[] or ^name.bool(default)

The method transforms value of variable $name into either integer or real number or bool respectively and
returns it. If real number is transformed into integer, it will be truncated.

One can specify default value to be returned if conversion is impossible, a string is empty or consists of white
space characters (tabs, spaces, newlines).

One may also specify default value, which will be returned if transformation is impossible. Default value may
be used when you process data received from visitors interactively. It will prevent text values from appearing
in mathematical expressions, when a user inputs, for example, a string instead of a number initially expected.

Method bool can convert into bool not only strings with numbers (0–false, not 0–true) but strings
containing values 'true'/'false' as well (case insensitive). It can be usable for reading data from external source
(xml for example).

Note: using empty string in mathematical expressions expressions is not considered error. Its value is then
regarded as zero.

Note: attempt of converting non�integer string into integer is considered error (e.g. string "1.5" is not an
integer).

Double, Int classes

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

88Parser 3.4.3

Example
Code…

$str[Item]
^str.int(1024)

…will output number 1024, as object str cannot be transformed into object of class int.

Code…

$double(1.5)
^double.int[]

…will output number 1, as the number was truncated.

Code...
^if(^form:search_in_text.bool(false){

...searching in text...
}

20.2Static methods

sql. Retrieving number from database

^int:sql{query}
^int:sql{query}[$.limit(1) $.offset(o) $.default(expression)]
^double:sql{query}
^double:sql{query}[$.limit(1) $.offset(o) $.default(expression)]

The method returns number resulted from SQL�query to a database server. The query must return value of
single column of single row.

query – query to a DB, written in SQL language;
$.offset(o) – ignore first o query records;
if SQL�server response was empty (0 records), …
$.default(expression) …the given expression will be evaluated returned;
$.default{code} …the given code will be executed and string result returned.

This method demands connection with database server (see operator connect).

Example
Code…

^connect[connect string]{
^int:sql{select count(*) from news}

}

…will return number of records in table news.

Env class
The class is designed for retrieving values of environment variables. The list of standard environment variables
is available at http://www.w3c.org/cgi. Apache web server assigns a number of additional variables.

Env class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

89Parser 3.4.3

21.1Static fields

fields. Retreve all environment fields

$env:fields

Such a construction returns hash with all environment variables.

Example
^env:fields.foreach[field;value]{
 $field - $value
}[
]

…will output all environment variables' names and their values.
Then the example will output:

SERVER_SOFTWARE - Apache/2.2.22 (Win32)
SCRIPT_NAME - /cgi-bin/parser3.cgi
PATH_INFO - /env.html
...

PARSER_VERSION. Retrieving Parser version

$env:PARSER_VERSION

Such a construction will return the full Parser version and platform.

Something like…
3.2.0 (compiled on i386-pc-win32)

Static fields

$env:environment_variable

Construction returns the value of specified environment variable.

Example
$env:REMOTE_ADDR

Will return IP�address of computer which has requested the document.

Retrieving values of HTTP�header fields

$env:HTTP_HEADER_FIELD

Such a construction will return the value of HTTP�header field, sent by browser to web�server (by HTTP
protocol).

Example
^if(^env:HTTP_USER_AGENT.pos[MSIE] >= 0){
 User is probably using MicroSoft Internet Explorer

}

Names of HTTP�header fields are all uppercase and begin with HTTP_. All hyphens ('-') in these names are
substituted by underscores ('_'). For additional information, please read your web�server documentation.

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

90Parser 3.4.3

File class
Class file is designed for working with files. Objects of this class can be created by different means:

1. by means of method POST through form field
<form method="post" enctype="multipart/form-data">…
<input name="photo" type="file">.

2. by one of constructors of class file.

While sending files to client (for example, by method mail:send or through field response:body) one
should define HTTP�header content-type. Parser determines file type by its extension with the help of table
MIME-TYPES, defined in Configuration method (see also Chapter Installing and configuring Parser). Parser
uses it to automatically determine, by file extension, the type of content to be sent in header content-type.
If type of content cannot be determined, content-type will be application/octet-stream.

22.1Constructors

base64. Decoding from Base64

^file::base64[encoded]
^file::base64[text|binary;flename;encoded[;$.content-type[...]]] [3.4.1]

Decodes a file from Base64 representation. To encode a file use
^file.base64[]

If option $.strict(true) is specified the exception will be raised if all characters can not be decoded.
Without this option an object will be created from the only charachers that are decoded
successfully. [3.4.2]

Detailed information on Base64 is available here http://www.ietf.org/rfc/rfc2045.txt and here
http://en.wikipedia.org/wiki/Base64.

Example
$encoded[
R0lGODdhyAAyANUAAP////j88fLz8O/v7+v21uns4uTyyd/f397vu9vf1NfsrtDpoM/Pz8rmk8Tj
hr+/v73geK+vr6nWUJ+fn52jkJzQNZXNJ4+Pj39/f3BwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAA
AA
AAACwAAAAAyAAyAAAG/0CAcEgsChkRjHIZ
ORif0Kh0Sq1ar9isdkudaD6gsHj80US46LR6zW5zBxjweE73YAbuvH7P71/kdIFzHxN9hoeIiUQH
HIKOgRx4ipOUlVgPgHQcGUsYGY2CHwyWpKWlE4IbZ1ADE6CDo6ays3wRkE5VD69iorS+v2gMmSAf
q1h/g7jAy8ysHnMdylnC0M3W1wAZ0JJvz2MY2OG+DIPcwcPS4uqUuyAPbbZjGuv0kwdzGXkbc+n1
/nnaeJkzQqCBwQYIDASQcm/MhSmdIkrE8HDKgAcYM2rE2M8Ig40gNw68GLJkxwEXJqoE96SkSwDe
wrCEQqCChZs4JSyMomFMh/8pjwLNizKgQ1BisaCgOjrm3ZCiTMXMfGo0apgnPa2CIDemo5CaOMNa
0BmFqxivQrSGGepxmKNeT5ZqdQqAQcyoUwFAVWskq9YLPqOAFRuWLJS7haKoXdtWK1wicucecXt0
6l6+RPxq1ZzvyWDChXf2/SZlcZjOk00bAxBZ8gHKlYlUXSzbNIhdq4d8xglBAWHDRQCL4SCFg/Hj
yJPfJT4Ew5zkyTNN3eUBunXjox48vw49cVp5KyUSgcbdelOCNsVCEOJbLPAh2oezcS6/+ZzipIfs
ykslvhguc9CFRYBXEEjEbjetN0R7oRXh323zjcGcEPT9F8V+RGB4yX1bGJj/hYdUZCIgghYoSASD
OYkGwIMTplEhhPZ9s9Jd0+V3xYMghIdBbkOQVx5y451nxS50kagAFCjeBByLEdZHoW01SpXFa5s9
YRsIQYoh4BS4fZVeWEdGkeRYOwkXRotovNjii1pFKZMW1FjFVo+2ZRnGllJoBo6RVIxZAQEA6Nnk
mUSwaZWbOW4RZ1RzAnClne5cYSYIPy1AWJh9EuYATGN456KEhUKZoY1ZXMZURd+ZBimeZc1RAAAo
YloFiuslwM+gMD4po0o0jirlGy5hNFuidIpxQbAbrYpFJhSwd5OsVrSnYEBheNCGmqGOgd+vQmjI
h7eOCvmhuFVo9oEA7EF7/wUBm+qVCWpqYBujhVCAC64e4IJYILlUmPWmG9SGgRaFOi6xy5oc1kvq
vf3+iJx0kHbg8HHKYtFOUmrg2KiVpsHL5rb/dktqLqY9Fmidxd6ZBY4eDLTFAOhQYVqjH1+48Mj9
LWayEJpZVTEWPXfgMhamggCvYmptXLPC3ALA8BQ4HrXzED0z9fMVMG/DxQHDUjq0EUk/sfQT9uIM
tWMYGxGw1SlHCicdH7A6RQTDTA3FHBqEh2oRByRblkbSfJTRwE+QhOzg/R6uEREicdHaWoQPccA+
dPCItJb/ZJ7F42ulXUQEVYfhqcz8am56FBPA9sEGGEyA0QQYbKC65aWVflL67UUw0LVpHXhOOua4
B1+4oVZ9wJ8V+gqvPAAHhP7IBxl8XUXyyyuPUjuBbDCB9FY0Xv33Dqa0gXF5Hwv++einr/767Lfv
/vvwxy///PTXj0YQADs=
]

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

91Parser 3.4.3
$original[^file::base64[$encoded]]
$filespec[/parser3logo.gif]
^original.save[binary;$filespec]

Outputs…

cgi and exec. Executing a program

^file::cgi[filename]
^file::cgi[filename;env_hash]
^file::cgi[filename;env_hash;argument1;argument2;…]
^file::cgi[format;filename;env_hash;argument1;argument2;…] [3.2.2]
^file::exec[filename]
^file::exec[filename;env_hash]
^file::exec[filename;env_hash;argument1;argument2;…]
^file::exec[format;filename;env_hash;argument1;argument2;…] [3.2.2]

Constructor cgi creates an object of class file, containing results returned by a program according to CGI
standard .

Note: when a program/script is executed, directory with it will be its working directory.

Headers, returned by the CGI�script, will then become fields of class file converted into UPPERCASE. E.g., if
a CGI�script script.pl returns a header some_field:some_value, then, on having processed
$f[^file::cgi[script.pl]]
we can address to $f.SOME_FIELD and get value some_value.

Constructor exec is similar to cgi but doesn't separate HTTP�headers from the text returned by the script.

format—defines format of loaded file and can be either text (default) or binary. While using binary
format the result will not transcoded to $request:charset and will not truncated on first zero char.

filename—path and name of file.

Object, created by these constructors, has additional fields:
status—information on the status of program's termination (usually 0 (zero) means successful termination,
while non�zero status means error);
stderr—standard errors stream.

Example
$cgi_file[^file::cgi[new.cgi]]
$cgi_file.text

Outputs text resulting from execution of new.cgi.

Optional arguments of constructors:

env_hash—hash, which can include
• additional environment variables to be later accessed from within the script,
• key stdin, containing text sent to the script in standard input stream,
• key charset, which indicates charset in which script operates (data to and from script will be transcoded

accordingly). [3.1.3]

Note: you can specify only standard CGI environment variables, or variables, whose names start with CGI_ or
HTTP_ (restricted to: UPPERCASE Latin characters, numbers, underscore and hyphen).
Note: unsafe�mode version allows you to use CGI environment variables' names without any limitations.

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

92Parser 3.4.3
[3.4.1]
Note: while processing HTTP POST request, you can use construction $.stdin[$request:body] to send
received POST data to the script's standard input stream.
Note: variables which were set by http server while executes Parser also will be availabe for scripts.

Example of how to use an external cgi�script
$search[^file::cgi[search.cgi;$.QUERY_STRING[text=$form:q&page=$form:p]]]

Example of how to use an external script
$script[^file::exec[script.pl;$.CGI_INFORMATION[I have had it enough]]]

Information being sent can be accessed and used within script script.pl:
print "Additional information: $ENV{CGI_INFORMATION}\n";

Example of receiving binary data from an external script
$response:body[^file::exec[binary;getfile.pl;$.CGI_FILENAME[$form:filename]]]

Example of passing several arguments
You can also send a number of arguments to the program by specifying them—separated by semicolon—after
env_hash:
$script[^file::exec[script.pl;;height;width]]

...or specify arguments as a table with one column: [3.2.2]
$args[^table::create{arg
height
width}]
$script[^file::exec[script.pl;;$args]]

Note: we insist that you store scripts to be run by constructors cgi and exec beyond web�space, since
executing a script with arbitrary arguments may case unexpected consequences.

create. Text file creation

^file::create[format;name;string or file]

^file::create[format;name;string or file;options] [3.4.0]
^file::create[string;extended options] [3.4.2]
^file::create[file;extended options] [3.4.2]

Constructs an object of class file, with specified name and content.
While creating an object in text format the constructor normalizes all end of line (EOL) characters.[3.4.2]

Format defines format of created file.
Until version 3.4.2 the method was able to create an object in text format only.
Options—hash, in which you can specify $.charset[charset] or $.content-type[...] [3.4.1]
Extended options—hash, in which you can specify $.name[file name], $.mode[format],
$.charset[charset], $.content-type[...] [3.4.2]

Note: if there is a need to save file to server disk, there is simple way: ^string.save[…].

Example of export data in XML format
#export.html
^connect[connection string]{
$products[^table::sql{select product_id, name from products}]
$file[^file::create[text;export.xml;^untaint[xml]{<?xml version="1.0"

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

93Parser 3.4.3
encoding="$request:charset"?>
<products>
 ^products.menu{<product id="$products.product_id" name="$products.name"/>}
</products>
}]]
$response:download[$file]
}

When this document is opened then file export.xml is created and browser suggests visitor to save it.
Sample result:

<?xml version="1.0" encoding="UTF-8"?>
<products>

<product id="1" name="Can be "Quoted""/><product id="2"
name="Johnson&Johnson"/>
</products>

load. Loading file from disk or HTTP�server

^file::load[format;filename]
^file::load[format;filename;download options]
^file::load[format;filename;new filename]
^file::load[format;filename;new filename;download options]

Loads file from disk or HTTP�server.

Format defines format of loaded file and can be either text or binary. The two types differ in newline
characters. For PC these characters are 0D 0A. If file is being loaded in format text, 0D will be deemed
unnecessary and truncated. These characters will be added back to the file by method save.

Filename—name of file with path or file's URL on HTTP�server.

It should be kept in mind that if argument new filename is specified, its value will be assigned to field
name. This argument is especially useful in dealing with method mail:send to send a file with needed name.

Download options—see "Working with HTTP�servers".

If a file was loaded from an HTTP�server, fields of HTTP�response headers can be accessed as fields of object
of class file.
Also there would be field tables, hash, keys of which are HTTP�response headers in upper case, and values
are tables with sole column value, containing all values of HTTP�response fields of same name.
All incoming cookies are stored in field cookies as a table with columns name, value, expires, max-
age, domain, path, httponly and secure. [3.4.2]

Example of downloading file from disk
$f[^file::load[binary;article.txt]]
File $f.name is $f.size in size and has the text:

$f.text

Example of downloading file from HTTP�server
$file[^file::load[text;http://www.parser.ru/;

$.timeout(5)
]]
Server software: $file.SERVER
<hr />
<pre>$file.text</pre>

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

94Parser 3.4.3

sql. Loading file from SQL�server

^file::sql{query}
^file::sql{query}[$.name[name] $.content-type[content-type] $.limit(1)
$.offset(o)]

Loads file from SQL�server. Result of query execution must be one record (use limit option in needed). Parser
considers its
• first column contains file body;
• second column contains file name;
• third column contains content-type of the file (if not specified, it will be determined by $MIME-TYPES

table).

Optional parameters:
$.limit(1) � limit response to one row only; [3.3.0]
$.offset(o)—ignore first o retrieved entries; [3.3.0]
File name and content-type may be also specified as a parameters. [3.1.4]

File name and its content-type will be passed to visitor if $response:download is used.

Note: for now only MySQL server is supported.

stat. Retrieving information about a file

^file::stat[filename]
Object created by this constructor has additional fields (objects of class date).

$some_file.size—size of file in bytes;
$some_file.cdate—creation date;
$some_file.mdate—modification date;
$some_file.adate—last access date.

filename—path and name of file.

Example
$f[^file::stat[some.zip]]
Size in bytes: $f.size

Created in: $f.cdate.year

$new_after[^date::now(-3)]
Status: ^if($f.mdate >= $new_after){new;old}

22.2Fields

name. Name of file
$some_file.name

The field contains the name of file. Object of class file has field name if a visitor has uploaded the file
through form field <input type=file>. Constructor file::load may also provide an alternative name
of file.

size. Size of file
$some_file.size

The field contains size of file in bytes.

text. Text of file
$some_file.text

The field contains text of file. By using this field, one can output the content of text files or text resulted from

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

95Parser 3.4.3
file::cgi and file::exec.
Note: automatic end of lines (EOL) normalization is made for text files (mode=text), but not for binary files
(mode=binary). For normalizing EOL characters in binary files, that come from form for example, you have to
use the following code:
$f[^file::create[$form:file;$.mode[text]]
$f.text

Information about file
$some_file.size—size of file in bytes;
$some_file.cdate—creation date;
$some_file.mdate—modification date;
$some_file.adate—last access date.

These fields available if object was created within constructor file::stat or file::load by loading local

file [3.3.0].

stderr. Standard error text of program execution
$some_file.stderr

After file::cgi and file::exec here goes text from standard error program stream.

status. Status of getting this file
$some_file.status

After file::cgi and file::exec in status field one can find status of program execution (success=0).
After file::load from HTTP�server here is status of HTTP request (success=200).

mode. File's mode. [3.4.0]
$some_file.mode

Could be text or binary.

content�type. MIME�type of file
$some_file.content-type

The field may contain file's MIME�type. If a cgi�script is executed (see file::cgi) MIME�type may be
specified by the script—in header "content-type". If a file is loaded (see file::load) or its status is
retrieved (see file::stat) MIME�type will be defined with the help of table $MAIN:MIME-TYPES (see
"Configuration method"), If file extension cannot be located in the table, MIME�type will be defined as
"application/octet-stream."

HTTP response headers
$some_file.HTTP_RESPONSE_HEADER

If a file was loaded from an HTTP�server, HTTP response headers will be accessible in UPPERCASE as fields of
object of class file.

$some_file.HTTP_RESPONSE_FIELD (in UPPERCASE)

For example: $some_file.SERVER.

If one response header occurs in a response several times, all its values are accessible in tables field:

$.tables[
 $.HTTP_RESPONSE_FIELD[table of values with sole column value]
]

Example:
$f[^file::load[binary;http://www.parser.ru/en/]]

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

96Parser 3.4.3
^f.tables.foreach[key;value]{
 $key=^value.menu{$value.value}[|]

}

22.3Methods

save. Saving file to disk

^some_file.save[format;filename]
^some_file.save[format;filename;options] [3.4.0]

Method saves object to file in specified format and with specified name.

format—format of saving file (text or binary)
filename—name of file and path for the file to be saved
options—hash, in which you can specify $.charset[charset] of saving text file

Note: if file with specified filename is exist, it will be overwrited.
Note: to append some text to a file, use ^string.save[append;…].

Example
^archive.save[text;/arch/archive.txt]

This code will save object of class file as archive.txt in text format to directory /arch/.

sql�string. Saving file to SQL�server

^file.sql-string[]

Returns the string, which can be used in SQL�query. Allows saving file in database.

Attention: currenty only MySQL�server is supported.

Example
$name[image.gif]
$file[^file::load[$name]]
^connect[connect string]{

^void:sql{insert into images (name, bytes) values ('$name', '^file.sql-
string[]')}
}

base64. Encoding to Base64

^file.base64[]

Method encodes file to Base64 representation.
To decode a file from Base64 to it's original, use
^file::base64[encoded]

Detailed information on Base64 is available here http://www.ietf.org/rfc/rfc2045.txt and here
http://en.wikipedia.org/wiki/Base64.

Example
$original[^file::load[binary;http://www.parser.ru/i/artlebedev.gif]]
<pre>^original.base64[]</pre>

Outputs…
R0lGODlhWgAlAMQAAP///4CAgOX0yb/jeKXXQtnurvn88uz318Xmhszok/L55KzaUJ/VNbnga9Lr
od/xvM/qmeXzx+PzxaXXQbLdXdHrndzvtbzhccvokaPWPMHje+Hyv8PlgcTlgpnSKAAAACH5BAEA

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

97Parser 3.4.3
AB4ALAAAAABaACUAAAX/ICCOZGmeaKqubOu+cCzPdG3feK7jXi/6HoDvNOwFhcEh8ohsLn9Hpc4I
FTpNxeyVWs1GvzsoOMksebtMbvPslOa4wKv5O04rgfSq/K0lo9h4I2qBT21lfGN7gnlrdnaGYIo3
cEmSkGiLj4CRO5RWbotimKKjnpY1nn5EjISFjaRaYamWm1t3qqagk320rKquhLmHPLy6l6+kyMJh
hXHGtbeavnqdxcN6qY6htac0s8/T0dvT3TOpGz0CAlh0BkgH0e7vXgYKsTkFRh4ISAP6oD789WBg
4F8CAAI9EMynD6ERAhCKENihQICBBXgWIOjQQ8GqBz0cYEyQDqOHCiEJ83jA0IMCSA8MHaiM6OGA
PX46DjRo2OMAtTkk9e0MooCBh4Q9hnrsEdRIgp0IENTcoZJBUFsj5EEhOUCdHqP+uq5j6JPpUQE+
AeQjQGCBrKNSf/Uo8ICDBw2L1goo0DWdPwJ6+VrooXGuBwJ7uxYMGSbu0Cv5rE7wkCFU3MMCEhLw
eRkxQ5MAOq8T6DGMAq0nSke4IOGEAbRZYcdOC+B1ide0menezbu379/Amf0bTry48ePIkytfzry5
8+fQPQQIYGR6deo9rEffzr04durfpWcXT767efPhxacvf749dOzkwY9n777+8unatUv/jt++/+Qh
AAA7

md5. MD5 hash of file

^file.md5[]

The method gets 16�byte hash of file and outputs it as a string—bytes are output in hexadecimal code without
delimiters, lowercase.

It is believed that:
• it is practically impossible for two strings to have the same MD5�hash;
• it is practically impossible to restore original string from its MD5�hash.

Detailed information on MD5 is available at http://www.ietf.org/rfc/rfc1321.txt

crc32. File checksum calculation

^file.crc32[]

The method gets CRC32 checksum for the file and outputs it as an integer.

22.4Static methods

delete. Deleting file from disk

^file:delete[path]
^file:delete[path;options] [3.4.3]

Deletes specified file.
path—path and name of file

If the directory is found empty after a file is deleted, the directory will also be deleted (if possible).

Optional options:
$.keep-empty-dirs(true)–preserve empty directories after the file is deleted.
$.exception(false)–suppress exception if error occurs during file's deletion.

Example
^file:delete[story.txt]

find. Finding file on disk

^file:find[file]
^file:find[file]{code to be executed if file is not found}

The method returns a string (object of class string) containing name of file and full path if it exists in
specified directory or in any of the parent directories. Otherwise, if a code is specified, it will be executed.

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

98Parser 3.4.3

Example without path

Assume, the code is located in /news/sport/index.html. Then, the file header.gif will be searched
within /news/sport/ intended solely for sports news. In case it cannot be found, and
/news/sports/header.gif doesn't exist, a standard headline image for news section will be used.

Example with path specified

File header.gif will be searched within /i/section/subsection/. If it still cannot be found, it will be
looked for in (in the order as follows):
• /i/section/

• /i/

• /

list. Getting directory listing

^file:list[path]
^file:list[path;filter]
^file:list[path;options] [3.4.3]

Makes up a table (object of class table) containing columns name, dir, size, cdate, mdate and adate
(prior version 3.4.3 it nontains only one name column) —containing files and directories—within specified
directory—matching pattern, if specified.
The values of dir column are equal 1 for directory entries and are equal 0 for file entries.
filter—a regular expression (see also method match of class string) used to specify a pattern for names
of file to match. It could be specified as a string or regex object [3.4.0]. If filter is not specified, all files
located in specified directory will be listed.

Available options:
• $.filter[filter]—a regular expression string or a regex object.
• $.stat(true/false)—if true the columns size, cdate, mdate and adate will be filled.

Note: without $.stat(true) the values of columns size, cdate, mdate and adate are empty.

Example
$list[^file:list[/;\.zip^$]]
^list.menu{

$list.name

}

Will output the names of all archives with extension .zip, located in web�server's root directory.

copy. Copying file

^file:copy[source filename;filename for new file]

The method copy file.

Note: you should be very careful with everything that involves writing within web�space, as this feature
(writing something to somewhere) is now widely used by malicious users.

Example
^file:copy[/path/source.txt;/path/destination.txt]

Will copy source.txt file.

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

99Parser 3.4.3

move. Moving or renaming a file

^file:move[old_filename;new_filename]
^file:move[old_filename;new_filename;options] [3.4.3]

The method renames/moves file or directory (under Win32, objects cannot be moved to another disk). New
directories are created with file permissions 755. The directory of the old file is deleted if it is found empty
after the file is moved.

Optional options:
$.keep-empty-dirs(true)–preserve empty directories after the file is moved.

Note: you should be very careful with everything that involves writing within web�space, as this feature
(writing something to somewhere) is now widely used by malicious users.

Example
^file:move[/path/file1;/file1]

Will move file1 into root directory.

lock. Exclusive use of code

^file:lock[file_to_be_locked]{code}

Code is not simultaneously executed by multiple visitors. File_to_be_locked is used to ensure exclusive
use.

Example
^file:lock[/counter.lock]{
 $file[^file::load[text;/counter.txt]]
 $string[^eval($file.text+1)]
 ^string.save[/counter.txt]
}
Number of visitors: $string

If locking is not used, two simultaneous requests can increase the counter's value... by 1, not by 2:
• first visitor comes;
• second visitor comes;
• first visitor reads counter's value—value equals 0;
• second visitor reads counter's value—value equals 0;
• first visitor increases counter's value—value now equals 1;
• second visitor increases counter's value—value now equals 1;
• first visitor writes new value—1;
• second visitor writes new value immediately after the first visitor, the value is 1, not 2.

Note: you should always keep in mind simultaneous requests. If you work with databases, SQL�servers usually
have built�in means that provide correct processing for simultaneously incoming requests.

Note: when there are more then one lock, always analize there mutual relations to avoid "A waits B, B waits A",
so called deadlock situation.

dirname. Path to file

^file:dirname[filespec]

Returns directory where the specified file/directory (filespec) is located.

Example

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

100Parser 3.4.3
#filename
^file:dirname[/a/some.tar.gz]
#directory's name…
^file:dirname[/a/b/]

In both cases the result will be:
/a

basename. Name of file without path

^file:basename[filespec]

Retrieves name of file with extension but without path from full path (filespec).

Example
^file:basename[/a/some.tar.gz]

...will return...

some.tar.gz

justname. Name of file without extension

^file:justname[filespec]

Retrieves name of file without path and extension from full path (filespec).

Example
^file:basename[/a/some.tar.gz]

...will return...

some.tar.gz

justext. File’s extension

^file:justext[filespec]

Retrieves extension without dot, from full path (filespec).

Example
^file:justext[/a/some.tar.gz]

...will return...

gz

fullpath. Full name of file from server’s root directory

^file:fullpath[filename]

Retrieves full name of file from server's root directory (see also "Appendix 1: Paths to files and
directories").

Example: page /document.html contains a link to some image. True path to the requested document,
however, may be different (e.g. if you use module mod_rewrite on Apache web�server). In this case, if you
place a relative link to the image, the image will not be displayed by browser, since browser has no idea about
mod_rewrite and will regard all relative paths as relative to the requested document.

File class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

101Parser 3.4.3
That is why it is better to replace relative path with absolute:

$image[^image::measure[^file:fullpath[image.gif]]]
^image.html[]

Construction…

…will result in code containing absolute path.

base64. Encoding to Base64

^file:base64[filename]

Method encodes file with specified filename to Base64 representation.
To decode a file from Base64 to it's original, use
^file::base64[encoded]

md5. MD5 hash of file

^file:md5[filename]

The method gets 16�byte hash of file with specified filename and outputs it as a string—bytes are output in
hexadecimal code without delimiters, lowercase.

It is believed that:
• it is practically impossible for two strings to have the same MD5�hash;
• it is practically impossible to restore original string from its MD5�hash.

Detailed information on MD5 is available at http://www.ietf.org/rfc/rfc1321.txt

crc32. File checksum calculation

^file:crc32[filename]

The method gets CRC32 checksum for file with specified filename and outputs it as an integer.

Form class
Class form is designed for working with form fields. The class has static fields available for reading only.

It is useful to check form fields for being empty and edit available database records with such an approach:

^if($edit){
record from database
 $record[^table::sql{… where id=…}]
}{
new record, error (some fields are empty) output
form fields
 $record[$form:fields]
}
<input name="age" value="$record.age" />

Form class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

102Parser 3.4.3

23.1Static fields

Getting form field value

$form:field_name

Such a construction returns value of form field. Returned object may belong either to class file, if field type
is file, or class string.Further actions with object can be performed only by methods prescribed for
relevant classes.

Field bearing no name is referred to as nameless.
Coordinates sent by browser when a visitor clicks image with attribute ISMAP can be accessed through
$form:imap.

You should remember that if <input type="image" name="fieldname" /> is used in html and visitor click on
this image, the browser will send coordinates of this action in fieldname.x и fieldname.y fields.

Example: text field, image field and file uploading
^if(def $form:photo){

^form:photo.save[binary;/upload/photos/beauty.^file:justext[$form:photo.n
ame]]

Image $form:photo.name was uploaded.
}
^if(def $form:user){

User: $form:user

}
^if(def $form:[action.x]){

Coordinates:

X: $form:[action.x]

Y: $form:[action.y]

}
<form method="post" enctype="multipart/form-data">
<input type="file" name="photo">
<input type="text" name="user">
<input type="image" name="action" src="/i/button.gif" width="75" height="25" />
</form>

…will store picture uploaded to server by a visitor through form field in specified file.

Example: nameless field

Within show.html string 123 can be accessed as $form:nameless.

imap. Getting mouse click coordinates

$form:imap

If a visitor clicked on an image with attribute ISMAP, such a construction returns hash with fields x and y
containing mouse click coordinates.

Example
In file /go.html you write:
$clicked[$form:imap]
^if(def $clicked){
 Visitor clicked on ISMAP link:

Form class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

103Parser 3.4.3
x=$clicked.x

 y=$clicked.y

}

In file /test.html you write:

Open /test.html in your browser and click on the picture. You will go to…
/go.html?a=b?10,30

…and you will see…
 Visitor clicked on ISMAP link:
 x=10
 y=30

qtail. Getting query string remainder

$form:qtail

Returns the part of $request:query after the second question sign (?).

Example
Assume, requested page is…
http://www.mysite.ru/news/article.html?year=2000&month=05&day=27?thisText

Then,
$form:qtail

…will return…
thisText

fields. All form fields

$form:fields

Such a construction returns hash with all form fields. Hash keys' names are the same as the names of form
fields. Hash keys' values are the form fields' values.

Example
^form:fields.foreach[field;value]{
 $field - $value
}[
]

…will output all form fields' names and their values.
Assume, requested URI is…
www.mysite.com/testing/index.html?name=worst&grade=F

Then the example will output:

name - worst
grade - F

tables. Getting multiple field values

$form:tables.field_name

If a form field has at least one value, such a construction returns a table (object of class table) with single
column field, containing all field values. It is used for getting multiple field values.

Form class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

104Parser 3.4.3
Important notice: before performing operations with a table, you should first check if it exists.

Example
Choose what you like doing in your free time:
<form method="POST">
 <p><input type=checkbox name=hobby value="wsurf">windsurfing</p>
 <p><input type=checkbox name=hobby value="tv">watching TV</p>
 <p><input type=checkbox name=hobby value="books">reading books</p>
 <p><input type=submit value="OK"></p>
</form>
$hobby[$form:tables.hobby]
^if($hobby){
 Your hobbies are:

 ^hobby.menu{
 $hobby.field
 }[
]
}{
 None selected}

The example will output either selected variants or a message informing that nothing has been selected.

files. Getting multiple files

$form:files

Such a construction return hash with all form files. Hash keys' names are the same as the names of form
fields. See below.

$form:files.field_name

If a form field has at least one file�value, such a construction returns a hash (object of class hash) with keys
0, 1, 2..., containing all files with specified field name. It is used for getting multiple files with the same field
name.

Important notice: before performing operations with a hash, you should first check if it is defined.

Example
^if($form:files.picture){

<p>Loaded pics (^form:files.picture._count[]):
^form:files.picture.foreach[sNum;fValue]{

$fValue.name
^fValue.save[binary;/upload/pictures/${sNum}.^file:justext[$fValue.

name]]
}[,]
</p>

}
<form method="post" enctype="multipart/form-data">
 <p>Choose some pictures for uploading:

<input type="file" name="picture" />

<input type="file" name="picture" />

<input type="file" name="picture" />

<input type="submit" value="Upload" />

 </p>
</form>

Hash class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

105Parser 3.4.3

Hash class
The class is designed for working with hashes, or associative arrays. A hash is considered defined (def), if it
isn't empty. Numerical value of a hash is the number of its keys (value returned by method
^hash_name._count[]).

24.1Constructors

Usually, we don't use constructors to create a hash. Instead, we do it the way described in "Parser's
Constructions".

create. Creating an empty hash or copying existing hash

^hash::create[]
^hash::create[existing hash or hashfile]

If existing hash or hashfile is not specified, an empty hash will be created. Otherwise, the constructor
will make a copy of it.

An empty hash is needed when we are going to dynamically fill it with data, e.g.:

$dyn[^hash::create[]]
^for[i](1;10){
 $dyn.$i[$value]
}

Before performing loop for, we have defined what exactly we are going to fill with data.

If we are planning to change a hash's content intensively, but still want to preserve initial values, we had better
create a copy of the hash. In this case, only the hash's copy will be changed, while initial values will remain
intact. For example:

$pets[
 $.pet[Dog]
 $.food[Bone]
 $.good[Collar]
]
$pets_copy[^hash::create[$pets]]

Note: field _default is also copied. [3.1.4]

sql. Getting SQL�query result as a hash

^hash::sql{query}
^hash::sql{query}[$.limit(n) $.offset(o) $.distinct(true/false)
$.bind[variables hash] $.type[hash/string/table]]

This constructor creates hash, in which keys' names are the values of fields in the first column of SQL�query's
result. Other columns' names become nested keys' names, and their values become respective keys' values.
When the result contains only one column, constructor creates the hash, where values of the column become
keys of hash associated with logical value truth .

Optional parameters:

Hash class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

106Parser 3.4.3
$.limit(n) get only n records.

$.offset(o) skip first o records of the query result.

$.bind[hash]
[3.1.4]

variables to bind, see «Queries with bound variables»

$.distinct(true/false) false or 0=consider duplicate an error (default);
true or 1=get records with unique keys.

$.type[hash/string/table]
[3.3.0]

hash=each hash item contain hash (default);
string=each hash item contain string. You must specify exactly two
columns in your SQL query;
table=each hash item containing table.

By default, duplicate of a value in key column is considered an error, but if you want the method to get the
records with unique keys, set flag $.distinct(true).
Note: such use results in spare data interchange between client and server. You had better change the query
so that the desired uniqueness should be the server's responsibility. If you need data as both table and hash,
consider using table::sql and table.hash together.

Example: hash of hash
With database containing hash_table…
pet food aggressive
cat milk very
dog bone never

…the code…
^connect[connect string]{

$hash_of_hash[^hash::sql{
select

pet,
food,
aggressive

from
hash_table

}]
}

…will result in hash of the following structure:
$hash_of_hash[

$.cat[
$.food[milk]
$.aggressive[very]

]
$.dog[

$.food[bone]
$.aggressive[never]

]
]

…from which we can effectively retrieve information, e.g. in such a way:
$animal[cat]
$animal likes eating $multi_level_hash.$animal.food

Example: hash of bool
With database containing participants table…
name
Konstantin
Alexander

…the code…
^connect[connect string]{

$participants[^hash::sql{select name from participants}]

Hash class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

107Parser 3.4.3
}

…will result in hash of the following structure:
$participants[

$.Konstantin(true)
$.Alexander(true)

]

…from which we can effectively retrieve information, e.g. in such a way:
$name[Ivan]
$name ^if($participants.$name){participates}{do not participate} in the project

24.2Fields

Fields of hash are the keys, the value of which we get by referring to it:
$hash.key

Such a construction will return value associated with the key. If non�existing key is referred to, the value of
key _default will be returned, if specified.

Assigning something to hash key actually adds or updates a pair key/value in the hash:
$my_hash.key[value]

For better interchangeability of hashes and tables, field fields contains reference to hash itself, see "Using
hash instead of table".

24.3Using hash instead of table

$hash.fields

Hash itself.

For better interchangeability of hashes and tables, field fields contains reference to hash itself, see
table.fields.

24.4Methods

_keys. List of hash keys

^hash._keys[]
^hash._keys[column name] [3.2.2]

The method returns table (object of class table), containing single column with all hash keys listed (since
version 3.4.0 the keys in the table are listed in order of putting the elements into the hash, before–the order is
not defined).
The name of column—"key" or the column name passed as a parameter.

Example
$man[

$.name[Jack]
$.age[22]
$.sex[m]

]
$tab_keys[^man._keys[]]
^tab_keys.save[keys.txt]

…will create file keys.txt with such a table:
key
sex

Hash class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

108Parser 3.4.3
age
name

_count. Number of hash keys

^hash.count[]

The method returns number of hash keys.

Example
Code…

$man[
 $.name[Jack]
 $.age[22]
 $.sex[m]
]
^man._count[]

…will return: 3

When used in mathematical expressions, numerical value of hash is equal to its keys' number:

^if($man > 2){greater}

_at. Element access by index

^hash._at(index)
^hash._at(-index)
^hash._at[first]
^hash._at[last]

The method returns value with specified index (starting from zero), so ^hash._at(0) is equal to
^hash._at[first].
For negative index it is calculated from the end of the hash, so ^hash._at(-1) is equal to
^hash._at[last].

foreach. Going through hash keys

^hash.foreach[key;value]{body}
^hash.foreach[key;value]{body}[delimiter]
^hash.foreach[key;value]{body}{delimiter}

The method works the same way as the method menu of class table. It goes through all hash keys and
relevant values (since version 3.4.0 the method goes through elements in order of putting the elements into
the hash, before–order is not defined).

key—name of variable to return keys' names
value—name of variable to return keys' values
body—code to be executed for each key�value
delimiter—code to be executed before each non�empty non�first body

You can force finish the loop using break operator or finish current step and go to next one using continue
operator. [3.2.2]

Example
Code…

Hash class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

109Parser 3.4.3
$man[
 $.name[Jack]
 $.age[22]
 $.sex[m]
]
^man.foreach[key;value]{
 $key=$value
}[
]

…will return…

name=Jack
age=22
sex=m

delete. Deleting key/value pair

^hash.delete[key]

The method deletes specified key/value pair from hash.

Example
Code…

^man.delete[name]

…will delete key name and related value from hash $man.

contains. Check for existance key in hash

^hash.contains[key]

The method checks if hash contains specified key. It returns Boolean TRUE if hash contain record with
specified key, or FALSE if they don't.

Example
Code…

^if(^man.contains[birthday]){
Birthday specified for visitor.

}

24.5Working with sets

sub. Subtracting hashes

^hash.sub[hash_to_be_subtracted]

The method subtracts hash_to_be_subtracted from hash, deleting keys common for both hashes.

Example
$man[
 $.name[Jack]
 $.age[22]
 $.sex[m]
]

Hash class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

110Parser 3.4.3
$woman[
 $.name[Mary]
 $.age[20]
]
^man.sub[$woman]

As a result, hash $man will remain with single key $man.sex containing value m.

add. Adding hashes

^hash.add[hash_to_be_added]

Adds hash_to_be_added to $hash. Keys bearing the same name are overwritten by those in
hash_to_be_added.

Example
$man[
 $.name[Jack]
 $.age(22)
 $.sex[m]
]
$woman[
 $.name[Mary]
 $.age(20)
 $.smile[yes]
]
^man.add[$woman]

New content of hash $man will be:

$man[
 $.name[Mary]
 $.age(20)
 $.sex[m]
 $.smile[yes]
]

Note: field _default is also added, if it existed, it is overwritten with new value. [3.1.4]

union. Joining hashes

^hash_a.union[hash_b]

The method joins two hashes. It returns hash containing all keys from $hash_a and those keys from
$hash_b, which are absent in $hash_a. The result has to be assigned to a new hash.

Example
Code…

$man[
 $.name[Jack]
 $.age[22]
 $.sex[m]
]
$woman[
 $.name[Mary]
 $.age[20]
 $.weight[50]
]
$union_hash[^man.union[$woman]]

Hash class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

111Parser 3.4.3
…will result in hash $union_hash:

$union_hash[
 $.name[Jack]
 $.age[22]
 $.sex[m]
 $.weight[50]
]

intersection. Intersecting hashes

^hash_a.intersection[hash_b]

The method intersects two hashes. It results in a hash containing keys that belong to both $hash_a and
$hash_b. The result has to be assigned to a new hash.

Example
Code…

$man[
 $.name[Jack]
 $.age[22]
 $.sex[m]
]
$woman[
 $.name[Mary]
 $.age[20]
 $.weight[50]
]
$int_hash[^man.intersection[$woman]]

…will return hash $int_hash:

$int_hash[
 $.name[Jack]
 $.age[22]
]

intersects. Checking if hashes intersect

^hash_a.intersects[hash_b]

The method checks if hashes intersect (i.e. have common keys). It returns Boolean TRUE if hashes intersect, or
FALSE if they don't.

Example
^if(^man.intersects[$woman]){
 Intersection found
}{
 Intesection not found
}

Hashfile class
The class is designed for working with hashes kept on disk. Unlike hash class, objects of this class are
considered to be always defined (def) and have no numeric value.

While hash class keeps its values in memory, hashfile keeps them on disk and it is possible to separately
specify time to keep each key�value pair.
Note: currently to keep one hashfile two files are used: .dir and .pag.

Hashfile class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

112Parser 3.4.3
Note: there is a limit on key and value strings, together they must not exceed 8000 bytes.

Reading and writing of data performed very quickly—Parser works only with necessary data files fragments.
On simple tasks hashfile performs considerably faster then databases.
Note: file can be changed only by one script at a time, others are waiting for it to complete processing of
request.

Example
Say, it's desirable to get some information from visitor on one page of site and to be able to show it on other
page. And it is necessary to prevent visitor from seeing or faking it in the middle.

It is possible to store information to hashfile, associated with some random string—session identifier. That
identifier can be stored to cookie, data are now kept on server, are not reachable and cannot be faked by
visitor.

opening/creating file with information
$sessions[^hashfile::open[/sessions]]
^if(!def $cookie:sid){
 $cookie:sid[^math:uuid[]]
}
after that…

$information_string[arbitrary value]
…storing arbitrary $information_string under sid key for 2 days
$sid[$cookie:sid]
$sessions.$sid[$.value[$information_string] $.expires(2)]

…like this can read the value stored earlier
if since the moment we stored it passed less then 2 days
$sid[$cookie:sid]
$information_string[$sessions.$sid]

25.1Constructor

open. Opening or creating

^hashfile::open[file name]

Opens existing disk file or creates a new one.
Currently to keep data two files are used, with extensions .dir and .pag.

Note: file can be changed only by one script at a time, others are waiting for it to complete processing of
request. Before changing script waits all others scripts to stop reading.

Note: it is not allowed to open same file twice.

25.2Reading

$hashfile.key

Returns the string, associated with a key, provided that association is not expired yet.

25.3Writing

$hashfile.key[string]

Stores to disk the association between key and string.

$hashfile.key[

Hashfile class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

113Parser 3.4.3
$.value[string]
$.expires(number of days)

]
$hashfile.key[

$.value[string]
$.expires[date]

]

Such a construction allows to specify the date for association to expire. There can be specified number of
days or some specific date.

Optional modifiers:
$.expires(number of days) – specifies number of days (can have fractional part, 1.5=day and a half),
during which to keep key/string pair, 0 days=forever;
$.expires[$date] – specifies date and time until which the association will be kept, here $date—the
variable of date type.

Note: there is a limit on key and value strings, together they must not exceed 8000 bytes.

25.4Methods

cleanup. Delete expired pairs

^hashfile.cleanup[]

The method goes through all pairs and delete expired.

Note: nothing deleted from files. Expired pairs just marked as deleted so following writing to hashfile can use
freed space.

delete. Deleting files from disk

^hashfile.delete[]

The method deletes from disk files, in which data of hash file are stored.

delete. Deleting key/value pair

^hashfile.delete[key]

The method deletes the key/value pair from file.

Note: nothing deleted from files. Pair wirh specified key just marked as deleted so following writing to
hashfile can use freed space.

foreach. Going through hash keys

^hash.foreach[key;value]{body}
^hash.foreach[key;value]{body}[delimiter]
^hash.foreach[key;value]{body}{delimiter}

The method goes through all keys and relevant values of hashfile (order is not defined). Method is
analogous to foreach of hash class.

You can force finish the loop using break operator or finish current step and go to next one using continue
operator. [3.2.2]

Hashfile class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

114Parser 3.4.3

hash. Converting to usual hash

^hashfile.hash[]

Converts the hashfile to usual hash.

release. Save data on disk and unlock files

^hashfile.release[]

Save all changes to disk and remove all locks.
After this operation hashfile will be available for concurrent processes. Any access to hashfile will
authomatically reopen file.

Image class
The class is designed for dealing with images. There may be two types of objects of class image. First type
includes objects based on existing images in supported formats, whereas the second—objects created by
Parser itself.

One can also retrieve EXIF information from JPEG files (http://www.exif.org).

For color presentation, Parser uses RGB system, where each shade of color consists of three components (R�
Red, G�Green, B�Blue). Each component has value starting with 0x00 and ending with 0xFF (0�255 in decimal
system). Final color represents an integer number of format 0xRRGGBB, where each component is allocated
two digits in the given sequence. The formula, according to which the color is calculated, is:

(R*0x100+G)*0x100+B

Thus, white color, which has maximum values (FF) for all components, is made up by the formula:

(0xFF*0x100+0xFF)*0x100+0xFF = 0xFFFFFF

26.1Constructors

create. Creating an object with specified dimensions

^image::create(dimension X; dimension Y)
^image::create(dimension X; dimension Y; background color)

Creates an object of class image with dimensions X (width) and Y (height). As an optional parameter, you
can specify background color. If this parameter is omitted, created image will have white color for
background.

Example
$square[^image::create(100;100;0x000000)]

An object square of class image with dimensions 100x100 and black background will be created.

load. Creating an object based on graphics file in GIF format

^image::load[file_name.gif]

Creates an object of class image based on ready background. This allows using existing GIF images as a mat
on which other graphic elements can be drawn—it can be used to draw graphs, graphic counters, etc.

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

115Parser 3.4.3

Example
$background[^image::load[counter_background.gif]]

An object of class image will be created, based on existing image in GIF format. This object can later be used
as a mat for drawing.

measure. Creating an object based on existing graphics file

^image::measure[file]
^image::measure[file_name]

Creates an object of class image, measuring dimensions of an existing graphics file or an object of class file
in supported format (Parser presently supports GIF, JPEG and PNG formats).

Constructor measure also reads EXIF information stored in JPEG files (http://www.exif.org), if it is present.
While creating JPEG file, most of today cameras also add information about the image, exposure parameters
and other information in EXIF format.

The picture itself is not used—the constructor only keeps in memory the dimensions and the name of the file.
Basic function of the constructor is to later call method html for the created object.

Parameters:
file—object of class file
filename—filename with path

Note: supports EXIF 1.0 and reads tags IFD0 and SubIFD, if any.

Example of creating tag IMG with width and height attributes
$photo[^image::measure[myphoto.png]]
^photo.html[]

will create object photo of class image, based on existing graphics in PNG format. Tag IMG will be created
with reference to the file and width and height specified.

Example of working with EXIF information
$image[^image::measure[jpg/DSC00003.JPG]]
$exif[$image.exif]
^if($exif){
 Camera manufacturer, model: $exif.Make $exif.Model

 Shooting time: ^exif.DateTimeOriginal.sql-string[]

 Exposure time: $exif.ExposureTime seconds

 Aperture: F$exif.FNumber

 Flash used: ^if(def $exif.Flash){^if($exif.Flash){yes;no};not known}

}{
 No EXIF information

}

26.2Fields

$image.src —filename

$image.width —width

$image.height —height

$image.exif —hash with EXIF information

Keys of $image.exif are names of EXIF�tags, see specification (http://www.exif.org/specifications.html).
Values may be of type string, int, double, date. When a tag has several values, they are turned into
hash, with numbers as keys (0…number_of_values�1).

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

116Parser 3.4.3
Frequently used EXIF�tags are (for detailed description see specification):
Tag Type Description
Make string Camera manufacturer

Model string Camera model

DateTimeOriginal date Shooting date and time

ExposureTime double Exposure time (in seconds)

FNumber double Aperture number F

Flash int 0=was not used, other values=was used

Note: Keys of non�standard EXIF�tags are their values in decimal numbers.

Example
$photo[^image::measure[photo.jpg]]
Filename: $photo.src

Image width in pixels: $photo.width

Image height in pixels: $photo.height

$date_time_original[$photo.exif.DateTimeOriginal]
^if(def $date_time_original){
 Picture taken on ^date_time_original.sql-string[]

}

As a result, filename, as well as width and height of the image stored in this file will be output. If picture was
taken with a digital camera, shooting date and time will most likely be output.

26.3Methods

html. Displaying an image

^image.html[]
^image.html[hash]

As a parameter, a hash may be specified in the method, containing optional image attributes, such as alt and
border, determining pop�up text—which appears when cursor is placed over the image—and border width.

Note: image attributes can be re�defined.

Note: for suppressing output of border attribute you have to specify option $.border[].

Example
$myphoto[^image::measure[myphoto.jpg]]
^photo.html[

$.border[0]
$.alt[That's me at school…]

]

The browser will display an image stored in variable $myphoto. Each time, cursor is placed over the image, a
pop�up text That's me at school… will appear.

gif. Encoding objects of class image in GIF format

^image.gif[]
^image.gif[file name]

Used to encode objects of class image created by Parser in GIF format.

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

117Parser 3.4.3
File name will be passed to visitor if $response:download is used.

Important notice: as a result, this method creates an object of class file, not image!

Besides, it is important to keep in mind that colors are taken from the palette, and when there are no colors
left in the palette, nearest shades will be picked up. If you create a complex graphics, especially with
background loaded in advance, you must keep in mind the sequence of colors captured.

Example
$square[^image::create(100;100;0x000000)]
$response:body[^square.gif[]]

Browser will display a black 100x100 pixels square.

26.4Drawing methods

These methods can be applied only to the objects of class image, created by constructors create and load.
You can use these methods to draw lines and various geometrical figures on images, fill areas of graphics with
various colors. The methods provide an opportunity to create dynamically changed images used as graphs,
graphic counters, etc.

Coordinates are calculated starting with left upper corner—the point referred to as (0:0).

Line style and width

^image.line-style[line style]
^image.line-width(line width)

Before calling any drawing method, you can specify line style and width to be used.
Line style is specified with a string where spaces imply absence of dots in the line, while all other
characters imply dots.

Example
$image.line-style[***]
$image.line-width(2)

Drawing methods will use 2�pixel�wide line of type:

*** *** *** *** ***

arc. Drawing an arc

^image.arc(center x;center y;width;height;start in degrees;end in
degrees;color)

The method draws an arc with specified parameters. The arc represents a part of an ellipse (as a special case
of circle) and is defined by center coordinates (X;Y) and width and height as well as initial and final angles
given in degrees.

Example
$square[^image::create(100;100;0x000000)]
^square.arc(50;50;40;40;0;90;0xFFFFFF)
$response:body[^square.gif[]]

Browser will display a black square with an arc equal to a quarter (0�90 degrees) of a circle with a 40�pixel
radius.

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

118Parser 3.4.3

bar. Drawing filled rectangles

^image.bar(x0;y0;x1;y1;rectangle color)

The method draws on an image a rectangle with specified coordinates and filled with specified color.

Example
$square[^image::create(100;100;0x000000)]
^square.bar(5;40;95;60;0xFFFFFF)
$response:body[^square.gif[]]

Browser will display a black 100x100 square with a white 90x20 rectangle, drawn according to the given
coordinates.

circle. Drawing an unfilled circle

^image.circle(center x;center y;radius;line color)

The method draws an unfilled circle of a specified radius, outlined with given color, relative to the center with
coordinates X and Y.

Example
$square[^image::create(100;100;0x000000)]
^square.circle(50;50;10;0xFFFFFF)
$response:body[^square.gif[]]

Browser will display a black square with a circle of 10 pixels radius drawn by a line with (50;50) as a center.

copy. Copying image fragments

^image.copy[source](x1;y1;width1;height1;x2;y2)
^image.copy[source](x1;y1;width1;height1;x2;y2;width2;height2;color_precision)

The method copies a fragment of one image to another. It is very useful in such tasks as placing signs on a
map. The method gets the following parameters:

1. Source image
2. Coordinates (X1;Y1) of the left top corner of copied fragment
3. Width and height of copied fragment
4. Coordinates (X2;Y2) to which copied fragment will be pasted
5. As optional parameters you can specify new width and height of pasted fragment (in this case the
fragment will undergo scaling), and value characterizing precision of color reproduction, The less this
value is, the more precise the color reproduction will be, but number of reproduced colors is decreased in
this case—and vice versa (default number of colors is 150)

$mygif[^image::load[test.gif]]

$resample_width($mygif.width*2)
$resample_height($mygif.height*2)

$mygif_new[^image::create($resample_width;$resample_height)]
^mygif_new.copy[$mygif](0;0;20;30;0;0;$mygif_new.width;$mygif_new.height)

$response:body[^mygif_new.gif[]]

In this example, we create two objects of class image. The first is based on existing GIF file; the second, which
is twice as big, is generated by Parser itself. After that, we copy into it the fragment of the first file scaled up
to the entire width and height of the second image. The last line of the code outputs the scaled fragment. It is
advisable to use this approach only to the images, which do not demand high quality.

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

119Parser 3.4.3

fill. Filling one�color areas of an image

^image.fill(x;y;color)

The method is used to fill single�color areas of an image with a new color. The area to fill is defined by a dot
with coordinates (x;y), which is located within it.

Example
$square[^image::create(100;100;0x000000)]
^square.line(0;0;100;100;0xFFFFFF)
^square.fill(10;0;0xFFFF00)
$response:body[^square.gif[]]

Browser will display a black 100x100 square diagonally crossed by a white line. The lower section will be black
and the upper—yellow.

font. Loading font file to make an inscription on an image

^image.font[set_of_characters;font_file_name.gif](space_character_width)
^image.font[set_of_characters;font_file_name.gif](space_character_width;charact
er_width)
^image.font[set_of_characters;font_file_name.gif;hash_with_params] [3.4.0]

Besides drawing, Parser provides for a possibility of making inscription on an image. To realize this
opportunity, it is necessary to have special files with font images. You can either use existing font files or
create those of your own, with a needed set of characters.

Having loaded such a file with the help of method font, set of characters specified in method parameters is
associated with fragments of image stored in a file. This must be an image in GIF format with unfilled
background, containing image of necessary set of characters looking like the following:

Example of file digits.gif with image of numbers:
0
1
2
3
4
5
6
7
8
9

Height of each character is defined as the ratio of image height to the number of characters in the set.
The method has the following parameters:

Set of characters—list of characters included in the font file
Name and path—of and to the font file
Space character width—in pixels
Character width—optional parameter

Some paramaters could be specified as a hash:
$.space(0) – space character width. By default space character width is equal to gif width.
$.width(x) – character width for monospaced font. By default proportional font is used.
$.width(0) – use monospaced font with auto�detection character width (will be equal to gif width)
$.spacing(0) – intersymbol distance. By default equal 1 pixel

By default, when the file is loaded the width of each of its character is measured, and when outputting the
text, proportional font is used. If you specify character width, monospaced font will be used.
All characters must be left aligned to start right from left edge of image.

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

120Parser 3.4.3

Example
$square[^image::create(100;100;0x00FF00)]
^square.font[0123456789;digits.gif](0)

In this case, the file will be loaded, containing images of characters from 0 to 9, and the set of characters will
be associated with their graphic equivalents. After the font for the inscription is defined, one can use method
text to make the inscription itself.

length. Getting inscription’s length in pixels

^image.length[inscription text]

The method calculates inscription's full length in pixels.

Example
$square[^image::create(100;100;0x00FF00)]
^square.font[0123456789;digits.gif](0)
^square.length[128500]

As a result, full length of the inscription "128500" will be calculated in pixels, paying attention to spaces.

line. Drawing a line on an image

^image.line(x0;y0;x1;y1;color)

The method draws on the image a line of specified color from (x0:y0) to (x1:y1).

Example
$square[^image::create(100;100;0x000000)]
^square.line(0;0;100;100;0xFFFFFF)
$response:body[^square.gif[]]

Browser will display a black 100x100 square diagonally crossed by a white line.

pixel. Work with image pixels

^image.pixel(x;y)

Returns the color of the image pixel specified. If coordinates are out of image bounds, returns �1.

^image.pixel(x;y;color)

Sets color of the image pixel specified.

polybar. Drawing filled polygons through joints coordinates

^image.polybar(polygon's color)[table with joints coordinates]

The method draws a polygon of specified color through joints coordinates given in the table. The last joint is
automatically connected to the first one.

Example
$coordinates[^table::create{x y
0 0
50 100
100 0
}]

$square[^image::create(100;100;0x000000)]

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

121Parser 3.4.3
^square.polybar(0x00FF00)[$coordinates]
$response:body[^square.gif[]]

Browser will display a green isosceles triangle against black background. The table gives coordinates of
triangle's vertices.

polygon. Drawing polygons through joints coordinates

^image.polygon(line color)[table with junctions coordinates]

The method draws an unfilled polygon with the coordinates given in table outlined by specified color. The last
joint is automatically connected to the first one with a line.

Example
$coordinates[^table::create{x y
0 0
50 100
100 0
}]

$square[^image::create(100;100;0x000000)]
^square.polygon(0x00FF00)[$coordinates]
$response:body[^square.gif[]]

Browser will display isosceles triangle outlined with green against black background. The table gives
coordinates of triangle's vertices.

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

122Parser 3.4.3

polyline. Drawing broken lines through joints coordinates

^image.polyline(color)[table with junctions coordinates]

The method draws a line according to joints coordinates specified in the table. It is used to create broken lines.

Example
$coordinates[^table::create{x y
10 0
10 100
20 100
20 50
50 50
50 40
20 40
20 10
60 10
65 15
65 0
10 0
}]
$square[^image::create(100;100;0xFFFFFF)]

$square.line-style[***]
$square.line-width(2)

^square.polyline(0xFF00FF)[$coordinates]

$file_withgif[^square.gif[]]
^file_withgif.save[binary;letter_F.gif]

$letter_F[^image::load[letter_F.gif]]
^letter_F.html[]

Browser will display letter F drawn by a dotted line against white background. In current directory, a file
letter.gif will be created. This example uses objects of class image of two different types. The table
specifies coordinates of broken line. Then, against the background created by constructor create a line is
drawn through specified coordinates. Created object of class image is encoded into GIF format. Resulted
object of class file is saved to disk. Afterwards, a new object of class image, based on saved file, is created.
Method html will output this object to browser window.

rectangle. Drawing rectangles

^image.rectangle(x0;y0;x1;y1;line color)

The method draws on an image an unfilled rectangle with specified coordinates and specified line color.

Example
$square[^image::create(100;100;0x000000)]
^square.rectangle(5;40;95;60;0xFFFFFF)
$response:body[^square.gif[]]

Browser will display a black 100x100 square with an unfilled 90x20 rectangle with white outline according to
the given coordinates.

Image class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

123Parser 3.4.3

replace. Replacing color in the area specified by coordinates table

^image.replace(old color;new color)[coordinates table]
^image.replace(old color;new color) [3.4.1]

The method is used to replace one color with another within the area restricted by coordinates table. If the
table is not specified, the color will be replaced in the whole image.

Example
$paint_nodes[^table::create{x y
10 20
90 20
90 80
10 80
}]

$square[^image::create(100;100;0x000000)]
^square.line(0;0;100;100;0xFFFFFF)
^square.line(100;0;0;100;0xFFFFFF)

^square.replace(0x000000;0xFF00FF)[$paint_nodes]
$response:body[^square.gif[]]

Browser will display a black square, crossed diagonally with white lines, with a pink rectangle within it. Since
method replace tells to replace with pink only black color, the lines will remain white.

sector. Drawing a sector

^image.sector(center x;center y;width;height;start in degrees;end in
degrees;color)

The method draws a sector with specified parameters, outlined with given color. Parameters of the method
are the same as in method arc.

Example
$square[^image::create(100;100;0x000000)]
^square.sector(50;50;40;40;0;90;0xFFFFFF)
$response:body[^square.gif[]]

Browser will display a black square with a sector equal to a quarter (0�90 degrees) of a circle with 40�pixel
radius. The sector is outlined with white.

text. Making an inscription on an image

^image.text(x;y)[inscription text]

The method outputs specified text according to the given coordinates (X;Y) using font file loaded by method
font in advance.

Example
$square[^image::create(100;100;0x00FF00)]
^square.font[0123456789;digits.gif](0)

^square.text(5;5)[128500]
$response:body[^square.gif[]]

Browser will display a green square with "128500" inscribed on it, left top point of the text located at (5;5).

Inet class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

124Parser 3.4.3

Inet class
Class inet does not have constructors and therefore cannot create objects. It contains only static methods.

27.1Static methods

aton. Convert string with IP address to number

^inet:aton[IP address]

IP address will be converted to number. This methos is similar to inet_aton perl and MySQL server functions.

Example
^inet:aton[10.0.0.2]

...returns number 167772162.

ntoa. Convert number to a string with IP address

^inet:ntoa(number)

Number will be converted to a string with IP address. This method is similar to inet_ntoa perl and MySQL
server functions.

Example
^inet:ntoa(167772162)

...returns string '10.0.0.2'.

Junction class
This class is designed for storing code and scope of its execution.
While referring to variables containing junction, Parser executes code within the stored scope.

Value of type junction appears in variable:

…when it is assigned a code:

$junction{Code to be assigned to variable: ^do_something[]}

…when passing code as parameter:

@somewhere[]
^method{Code passed as parameter: ^do_something_else[]}
…
@method[parameter]
#in this case junction will be passed into $parameter

…while referring to the name of a class method:
$action[$user:edit]
#$action[$user:delete]
^action[parameter]

In this case, $action contains reference to the method and its class. Calling action is then identical to
calling ^edit[parameter].

Junction class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

125Parser 3.4.3
…when referring to the name of an object method:

$action[$person.show_info]
^action[full]

In this case, $action contains reference to the method and its object. Calling action is then identical to calling
^person.show_info[parameters].

@check_if_old_enough[age;order_alcohol]
^myif($age<21 && !$order_alcohol){
 Sorry, but we cannot sell strong drinks to ${age}-year-olds.
}

Example of using junction of expressions and code
@myif[condition;action][age]
$age(11)
^if($condition){
 $action
}

Note: parameter with expression is code calculating the expression. It is executed—i.e. expression is
calculated—every time the parameter is referred to within the call.

In this case, operator myif receives code which—along with everything else—outputs $age. Operator
performs check and executes code within the stored scope ($condition and $action). Therefore, what is
to be checked and what is to be output will not depend on whether local variable age exists or what its value
is.

Example of checking if method exists
^if($some_method is junction){
 ^some_method[parameter]
}{
 no method
}

Method some_method, will be called only if it is defined.

Json class
The class is designed for working with JSON (JavaScript Object Notation).

JSON is a lightweight text�based open standard designed for human�readable data interchange. It is based on
a subset of the JavaScript Programming Language, Standard ECMA�262 3rd Edition � December 1999.

29.1Static methods

parse. Parsing JSON string into hash

^json:parse[JSON-string;parsing options]

Method transforms JSON�string into a hash.

Parsing options—hash with parsing options.

Json class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

126Parser 3.4.3
Default Value

$.depth(number) 19 Maximum depth

$.double(true|false) true true –Stores numbers as objects of cla
false –Stores numbers as strings.

$.distinct[first|last|all] not defined The way of processing elements with iden
first –Only the first element will be sto
last –Only the last element will be sto
all –All elements will be stored in out
second will have suffixes _2, _3, etc.
default –elements with identical name

$.object[method name] not defined If defined the specified method will be ca
result of the method will be passed to out
parameters–name and value.

$.array[method name] not defined If defined the specified method will be ca
of the method will be passed to output. T
parameters–name and value. [3.4.2]

$.taint[transformation type] not defined Defines the transformation type for all str

Example
@main[]
$json_string[{

"a1":{"b": 1, "c": "xyz", "d": "zzz"},
"a2":{"b": 1, "b": 2, "b": 3}

}]

$h[^json:parse[$json_string;
$.double(false)
$.distinct[all]
$.object[$handler]

]]

@handler[key;value]
$result[^if($key eq "d"){=^value.length[]=}{$value}]

The specified JSON�string will be transformed into the following hash:
$h[

$.a1[
$.b[1]
$.c[xyz]
$.d[=3=]

]
$.a2[

$.b[1]
$.b_2[2]
$.b_3[3]

]
]

string. Converting Parser object into JSON�string

^json:string[object;options]

Method serializes system of user object into JSON�string.

Options–hash with parsing options.

Json class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

127Parser 3.4.3
Default Value

$.skip-unknown(true|false) false By default (false) only the objects of clas
date, table, hash и file are accepted. Other
If this option is set to true, these objects w

$.indent(true|false)
$.indent[string]

false If this option is set to true the resulting JS
characters.
The option is also can be specified as user�
[3.4.3]

$.date[sql�string|gmt�string|unix�timestamp] sql�string Defines format of objects of class date (se
same names).

$.table[object|array|compact] object Defines format of objects of class table.
object:
 [{"col1":"val11","col2":"val12",...},{"col1":"va
array:
 [["col1","col2",...] || null (for nameless таб
compact:
 ["value11" || ["val11","val12",...],...]

$.file[text|base64|stat] not defined Defines format of bodies of objects of clas
By default (if the option is not specified of
be omited.

$.xdoc[options for converting into text] not defined Options for converting xdoc object into te

$.class-name[method name] not defined Objects of any class (including mentioned
serialized with user's method. The method
parameters–object's name, value and optio
serializing user's objects recursively.

Parser searches for the specified method in
$._default[method name] not defined If specified the method will be called for al

(other than are handled with option $.cla
method must accept three parameters–obj

Example
@main[]
$h[

$.void[]
$.bool(true)
$.double(1/2)
$.string[ABC]
$.hash[

$.e[ee]
]
$.date[^date::create(2006;08;18;06;09;00)]
$.table[^table::create{c1 c2 c3^#0Av1 v2 v3^#0Av4 v5 v

6}]
$.file[^file::create[text;zigi.txt;file-content]]
$.img[^image::create(100;100;0)]

]
^json:string[$h;

$.indent(true)
$.table[array]
$.file[base64]
$.image[$image_handler]

]

@image_handler[key;value;params]
"custom value of image $key"

…will returns:
{

"void":"",

Json class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

128Parser 3.4.3
"bool":true,
"double":0.5,
"string":"ABC",
"hash":{

"e":"ee"
},
"date":"2006-08-18 06:09:00",
"table":[

["c1","c2","c3"],
["v1","v2","v3"],
["v4","v5","v6"]

],
"file":{

"class":"file",
"name":"zigi.txt",
"size":12,
"content-type":"text\/plain",
"mode":"text",
"base64":"ZmlsZS1jb250ZW50"

},
"img":"custom value of image img"

}

Mail class
The class is designed to deal with electronic mail. Description of how to configure this class can be found in
chapter Configuration.

30.1Static methods

send. Sending a message via e�mail

^mail:send[message]

The method sends message to the specified e�mail address. One can specify several addresses separated by
comma.

^mail:send[
 $.from[Fred <freddy@hotmail.com>]
 $.to[Peter <peter@hotmail.com>]
 $.subject[Hi there!!!]
 $.text[How is it going? Haven't seen you for ages!]
]
As a result of this code, a message will be sent to peter@hotmail.com containing text: "How is it going?
Haven't seen you for ages!"

message—is a hash, where you can specify the following keys:
• header_field
• text
• html
• file
• charset
• options
• print-debug [3.4.0]

Note: It is recommended that in errors-to header you specify the address to which delivery report will be
sent if the message cannot be delivered to the addressee. Default value is "postmaster".

charset—if this key is specified, the headers and text blocks will be transcoded using specified charset.

Mail class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

129Parser 3.4.3
Default charset for all messages is that, specified in $request:charset (i.e. is not transcoded).

Example:
$.charset[koi8-r]

options—these options will be passed to command line of sendmail program (only on UNIX).

print-debug—the message text will be printed instead of sending message.

You can also specify all message headers, specifying their values in the following way (short form):
$.header_field[value]

or with parameters (complete form):

$.header_field[
 $.value[string]
 $.parameter[string]
]

Examples:
$.from[Fred <freddy@hotmail.com>]
$.to[Peter <peter@hotmail.com>]
$.subject[How is it going? Haven't seen you for ages!]
$.x-mailer[Parser 3]

Along with the header you can send one or both text blocks (text, html) as well as any number of blocks
file and message (see below).
If you send both text blocks, section MULTIPART/ALTERNATIVE will be formed, and having received this
message, modern mail clients will display HTML, whereas obsolete ones will display plain text.

short form:
$.text[string]

full form:
$.text[
 $.value[string]
 $.header_field[value]
]

…where value is the value of text block and you can specify all header fields the same way we did with hash
message (see above).
Note: It is not imperative to specify content-type header—it will be generated automatically. This header
does not affect transcoding process and is used only to tell mail client what charset it must use to display
message.

Sending HTML. Short form:

$.html{string}

full form:
$.html[
 $.value{string}
 $.header_field[value]
]

Curly brackets are necessary to switch default transformation type to HTML.

Attaching a file. Short form:

$.file[file]

full form:

Mail class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

130Parser 3.4.3
$.file[
 $.value[file]
 $.name[filename]
 $.content-id[XYZ] [3.2.2]
 $.format[uue|base64] [3.2.2]
 $.header_field[value]
]

File is an object of class file, which will be attached to the message. MIME�type of sent data (content-
type header of a part) is determined according to table MIME-TYPES (see also Configuration method).

Filename is the name that the file to be sent will bear.
By default the file will be sent in uuencode form.

Default file encoding format is base64 since version 3.4.0 and uue prior version 3.4.0.

Attaching a message:
$.message[message_text]

The format of the message is the same as that of the whole method's parameter.

There may be several attachments. In this case you must add an integer after the name.
Example:
 $.file
 $.file2
 $.message
 $.message2

Example of how to use alternative blocks and attachments
^mail:send[
 $.from[Fred <freddy@hotmail.com>>]
 $.to[Peter <peter@hotmail.com>]
 $.subject[How is it going?]
 $.text[How is it going? It's really great in here!!!]
 $.html{How is it going? It's really great in here!!!

 }
 $.file[^file::load[binary;perfect_life1.jpg]]
 $.file2[
 $.value[^file::load[binary;perfect_life2.jpg]]
 $.name[pf_life2.jpg]
 $.content-id[pic2]
]
]

As a result, a message will be sent to peter@hotmail.com containing text "How is it going? It's really great
in here!!!" in plain text and HTML. Two photographs will be attached to the message to support the idea, and
on these photos…

Math class
Class math does not have constructors and therefore cannot create objects. It contains only static methods
and is used to deal with mathematical expressions. While working with this class it is important to keep in
mind values precision of class double.

Math class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

131Parser 3.4.3

31.1Static fields

Pi number

$math:PI—π value

31.2Static methods

abs, sign. Operations with number sign

The methods perform operations with number sign

^math:abs(number) returns absolute value of number (module)

^math:sign(number) returns 1 if number is positive, –1 if negative and 0 if number
equals zero

Example
^math:abs(-15.506) returns 15.506
^math:sign(-15.506) returns �1

convert. Converting number from one base to another

^math:convert[number](base-from;base-to)

Method converts number from one base to another.

Example
^math:convert[255](10;16)

…will returns FF string

crc32. String checksum calculation

^math:crc32[string]

The method gets CRC32 checksum for specified string and outputs it as an integer.

crypt. Hashing passwords

^math:crypt[password;salt]

The method hashes password. Parameters are password to be encrypted and salt to base encryption on.

Arguments:
password—initial string;
salt—string determining hashing algorithm and introducing an element of randomness into hashing
process—consists of head and body. If body is not specified, Parser will generate a random body.

It is not very sensible to store users' passwords simply storing them in a database or saving to disk—since,
having managed to steal a file or DB table with passwords, someone will be able to use them. That is why one
should store not passwords themselves but their hashes—that is the result of safe and irreversible
transformation of password string. While password typed in by a visitor is checked, the received string is
encrypted according to the same algorithm as that of password stored in a file/database (this encrypted
password is used as salt), and the two strings are then compared .

Table with available algorithms:

Math class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

132Parser 3.4.3
Algorithm Description salt head salt body
MD5 built�in in Parser, available on all

platforms
$apr1$ Up to 8 random letters (in

uppercase or lowercase) or
numbers

MD5 if supported by UNIX OS 1 Up to 8 random letters (in
uppercase or lowercase) or
numbers

DES if supported by UNIX OS (no) 2 random letters (in
uppercase or lowercase) or
numbers

others those supported by UNIX OS read the documentation
on your operating
system, function crypt

read the documentation on
your operating system,
function crypt

Note: to use $ in Parser, you must precede it with ^.

Note: Apache web�server allows using hashed passwords in password files (.htpasswd). In this case you
may use hashes of passwords created by any of the algorithms given in the above table, including algorithm
built into Parser.

How to create .htpasswd file:
@main[]
$users[^table::create{name password
alice xxxxxx
bob yyyyyy
}]

$htpasswd[^table::create[nameless]{}]
^users.menu{
 ^htpasswd.append{$users.name:^math:crypt[$users.password;^$apr1^$]}
}

^htpasswd.save[nameless;.htpasswd-parser-test]

How to check password
$right[123]
$from_user[123]
$crypted[^math:crypt[$right;^$apr1^$]]
#Note: $crypted will be different every time it is referred to
$crypted

^if(^math:crypt[$from_user;$crypted] eq $crypted){
 Eat, drink, and be merry
}{
 Call 911…
}

Detailed information on MD5 is available at http://www.ietf.org/rfc/rfc1321.txt

degrees, radians. Degrees�radians transformation

The methods transform degrees into radians and vice versa.

^math:degrees(number_of_radians) returns a number of degrees equal to the specified
number of radians

^math:radians(number_of_radians) returns a number of radians equal to the specified
number of degrees

Example

Math class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

133Parser 3.4.3
^math:degrees($math:PI/2) returns 90 (degrees)

^math:radians(180) returns π

digest. Cryptographic hashing

^math:digest[algorithm;string or file; $.format[hex|base64] $.hmac[key]]

The method provides an ability to work with different cryptographic hashing algorithms.
It generates a hash for specified string or file.

The following algorithms are supported: md5, sha1, sha256, sha512.
Depending on format option the result will be returned as HEX file (default) or BASE64 string.

With option hmac specified the data integrity will be checked based on specified private key and hash�based
message authentication code (HMAC).

exp, log, log10. Logarithmic functions

^math:exp(number) the exp function returns the exponential value
of parameter

^math:log(number) natural logarithm

^math:log10(number) the base 10 logarithm

These methods calculate values of logarithmic functions with specified number.

Note: (if you have only vague memories of your school years):
the base�B logarithm of V is calculated as log(V)/log(B)

md5. MD5 hash of a string

^math:md5[string]

The method gets 16�byte hash of specified string and outputs it as a string—bytes are output in hexadecimal
code without delimiters, lowercase.

It is believed that:
• it is practically impossible for two strings to have the same MD5�hash;
• it is practically impossible to restore original string from its MD5�hash.

Example
As a name of cache�file we will use an MD5�hash of $request:uri, It will not only provide univocal match
of filename and request string, but also deliver us from necessity of shortening request string and removing
special characters from it.

^cache[$cache_directory/^math:md5[$request:uri]]($cache_time){
 …
}

Detailed information on MD5 is available at http://www.ietf.org/rfc/rfc1321.txt

pow. Raising a number to power

^math:pow(number;power)

This method raises a number to power.

Math class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

134Parser 3.4.3

Example
^math:pow(2;10)

…returns 1024, i.e. (2
10

= 1024)

random. Random number

^math:random(upper_limit)

The method returns a random number, which is taken from the range starting with 0 and ending with the
number specified in upper_limit (the number given as upper_limit is not included in the range).
Note: In some systems it outputs a pseudorandom number.

Example
^math:random(1000)

The code returns a random number from the range starting with 0 and ending with 999.

round, floor, ceiling. Rounding of number

^math:round(number) – rounding to the closest integer

^math:floor(number) —rounding towards lesser integer

^math:ceiling(number) —rounding towards greater integer

The methods return round value of the given number of class double.

Example
^math:round(45.50) —Will equal 46

^math:floor(45.60) —Will equal 45

^math:ceiling(45.20) —Will equal 46

^math:round(-4.5) —Will equal �4

^math:floor(-4.6) —Will equal �5

^math:ceiling(-4.20) —Will equal �4

sha1. SHA1 hash of string

^math:sha1[string]

The method gets SHA1 hash for specified string.

sin, asin, cos, acos, tan, atan. Trigonometric functions

^math:sin(radians) sine

^math:asin(number) arc sine

^math:cos(radians) Cosine

^math:acos(number) arc cosine

^math:tan(radians) Tangent

^math:atan(number) arc tangent

These methods calculate values of trigonometric functions of a specified number.

Example

Math class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

135Parser 3.4.3
^math:cos(^math:radians(180))

will return –1 (cos π = -1).

sqrt. Square root of a number

^math:sqrt(number)

This method calculates square root of the number.

Example
^math:sqrt(16)

…returns 4.

Note (if you have completely forgotten what you learnt at school):
nth root of a number is calculated by raising it to the power 1/n.

trunc, frac. Operations with integer/fractional part

^math:trunc(number) – Returns integer part

^math:frac(number) – Returns fractional part

Example
^math:trunc(85.506) —Will return 85

^math:frac(85.506) —Will return 0.506

uuid. Universally unique identifier

^math:uuid[]

The method outputs random string of format…
22C0983C�E26E�4169�BD07�77ECE9405BA5

Note: in some OSes outputs pseudorandom string.

This method is useful in cases when it is hard or insensible to use through�numbering of objects, e.g. while
performing distributed computing.

UUID is also known as GUID.

Example
A company's branches accumulate orders and periodically send them to headquarters. To ensure identifier's
uniqueness, we use UUID.

different branches accumulate order's information in tables 'orders' and
'order_details'

create unique identifier
$order_uuid[^math:uuid[]]

add record about order
^void:sql{
insert into orders
 (order_uuid, date_ordered, total)
values
 ('$order_uuid', '$date_ordered', $total)

Math class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

136Parser 3.4.3
}
cycle adding records on ordered goods should be here
^void:sql{
insert into order_details
 (order_uuid, item_id, price)
values
 ('$order_uuid', $item_id, $price)
}

parts of tables 'orders' and 'order_details' are periodically retrieved
and sent (^mail:send[…]) to headquarters,
where these parts of tables are added to common tables 'orders' and
'order_details'
…WITHOUT any problems with multiple instances of 'order_id'

Note: Parser generates UUID based on random numbers, not on time. Parameters are:
variant = DCE;
version = DCE Security version, with embedded POSIX UIDs.
…that means that not all of the UUID bits are picked up at random. It is to be so, indeed:
xxxxxxxx�xxxx�4xxx�{8,9,A,B}xxx�xxxxxxxxxxxx

Detailed information on UUID is available at: http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

uuid64. 64�bit unique identifier

^math:uid64[]

The method returns a random string of format:
BA39BAB6340BE370

Note: in some OSes it results in pseudorandom string.

See ^math:uuid[].

Memcached class
The class is designed for working with memcached servers using libmemcached library.

Example
A tiny user�defined class that works as an operator cache, but the cached data is stored into memcached
server:

@main[]
$m[^mcache::open[localhost]]
^m.cache[key2;10]{dt: $d[^date::now[]] ^d.sql-string[] ^sleep(3)}

@CLASS
mcache

@auto[]
$timeout(4) ^rem{ timeout, seconds }
$retry_on_timeout(false) ^rem{ retry cache lock attempts }

@open[connect-options]
$m[^memcached::open[$connect-options]]

Memcached class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

137Parser 3.4.3
@cache[key;expires;code][lock;i]
$result[$m.$key]
^if(!def $result){

^rem{ not cached yet }
$lock[${key}-lock]
^while(!^m.add[$lock; $.value[$timeout] $.expires($timeout)]){

^rem{ another process got the lock, waiting ... }
^for[i](1;$timeout*5){

^sleep(0.2)
$result[$m.$key]
^if(def $result){^break[]}

}
^if(def $result){

^break[]
}{

^if(!$retry_on_timeout){
^throw[$self.CLASS_NAME;Timeout while getting lock for

key '$key']
}

}
}
^if(!def $result){

^rem{ we got the lock, processing the code }
^try{

$result[$code]
$m.[$key][$.value[$result] $.expires($expires)]

}{}{
^m.delete[$lock]

}
}

}

32.1Constructors

open. Creating object

^memcached::open[connection options]
^memcached::open[connection options](default time in seconds for keeping items)

Example
$memcached[^memcached::open[server1:port1,server2]]

Example
$memcached[^memcached::open[

$.server[server1:port1]
$.binary-protocol(true)
$.connect-timeout(5)

]]

32.2Reading

$memcached.key

Returns the string, associated with a key, provided that association is not expired yet.

Memcached class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

138Parser 3.4.3

32.3Writing

$memcached.key[string]
$memcached:name[
 $.value[value]
 ...optional modifiers...
]

Stores to memcached server the association between key and string.

Optional modifiers:
$.expires(number of seconds)–specifies number of seconds, during which to keep key/string pair,
0–forever;

32.4Methods

add. Adding item

^memcached.add[key;string]

If the item with specified key is already exist on server the method do nothing and returns false.
If the item with specified key does not exist on server it will be stored and the method returns true.

Take in mind that usually you do not want to use this method. Use $memcached.[$key][$value] instead.

clear. Deleting all data

^memcached.clear[]
^memcached.clear(time in seconds)

The method deletes all data from server.
If called without options the data will be deleted immediately.
If the option was specified the data will be deleted after the specified time in seconds is passed.

delete. Delete key/value pair

^memcached.delete[key]

The method deletes the key/value pair from server.

mget. Getting multiple items

^memcached.mget[key1;key2;key3;...]
^memcached.mget[single_column_table_with_keys]

Method gets from server all non�expired items with specified keys and returns them as a hash.

release. Closing connection to server

^memcached.release[]

Closes connection to the server.
Any access to memcached object will authomatically restore connection.

Memcached class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

139Parser 3.4.3

32.5Connection parameters

Connection options can be specified as string or hash.

If the connection options are specified as a string, the libmemcached method memcached_servers_parse
will parse these options. This method expecting options into the following format:
server1:port1,server2,server3,server4:port4
See libmemcached documentation for more details.

If the connection options are specified as a hash, they will be processed by multipurpose modern method
memcached.
Any memcached method's option of libmemcached library that is installed in your system can be specified (see
libmemcached documentation). You have to specify options without "��" prefix.

The list of the most useful options:
$.server[<servername>:<port>]
$.binary-protocol(true)
$.connect-timeout(N)
$.tcp-keepalive(true)

Memory class
This class is designed for working with Parser's memory.
Using it will help you save memory in your scripts.

Note for inquisitive minds: Parser uses famous and widely respected conservative garbage collector Boehm�
Demers�Weiser, see http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

33.1Static method

compact. Collecting garbage

^memory:compact[]

This method collects so�called "garbage" in memory, cleaning it up for reuse by your code.
Garbage is memory no longer used by your code, i.e. to which there are no references in your code.

For example:

$table[^table::sql{query}]
$table[]
free up memory occupied by SQL-query result
^memory:compact[]

Parser does not collect garbage automatically leaving decision�making to coder: call compact from place(s)
where you expect greatest benefit, for example before XSL�transformation.

$status:memory will help you fix and find places most favorable for collecting garbage.

Important notice: it is necessary to use local variables as intensely as possible and zero out, which you no
longer need. All this will help compact free up more memory.

Important notice: total memory cleaning is not guaranteed.

Reflection class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

140Parser 3.4.3

Reflection class
The class is designed for getting information about objects, classes and methodes.

34.1Static methods

base. Object's base class

^reflection:base[class]
^reflection:base[object]

Returns the object's base class (if any) or void.

base_name. Name of object's base class

^reflection:base_name[class]
^reflection:base_name[object]

Returns the object's base class name (if any) or void.

class. Object's class

^reflection:class[object]

Returns the object's class (similar to $object.CLASS).

class_name. Name of object's class

^reflection:class_name[object]

Returns the object's class name (similar to $object.CLASS_NAME).

classes. Classes listing

^reflection:classes[]

Returns the hash with all classes.
The keys of the hash are classes' names, the values are strings methoded (for classes with methods) or void.

copy. Copying object's fields

^reflection:copy[src-object;dest-object]

Method copies all fields from source to destination object.

create. Create an object

^reflection:create[class name;constructor name]
^reflection:create[class name;constructor name;parameters]

Creates an object of a class with the specified name by calling a constructor with the specified name.
This method can be useful if you need to create an object of the class which name you have in a variable.

Note: in this method you can not specify more than 100 parameters.

Reflection class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

141Parser 3.4.3

delete. Delete object's field

^reflection:delete[object;field name]
^reflection:delete[class;field name]

Delete a field with specified field name for specified object or class.

Example
@main[][a;h]
$a[^a::create[]]
^reflection:delete[$a;b]

$h[^hash::create[$x]]
^h.foreach[k;v]{$k='$v'}[,]

@CLASS
a

@create[]
$a[1]
$b[2]
$c[3]

Returns:
a='1', c='3'

dynamical. Getting method's call type

^reflection:dynamical[]
^reflection:dynamical[class]
^reflection:dynamical[object]

Without the parameter the method returns true if the calling method was called dynamically and returns
false if the calling method was called statically.

With the parameter the method returns true if an object was passed and returns false if a class was
passed.

^reflection:dynamical[] may be useful inside the methods when you need to know if these methods
were called–dynamically or statically.

field. Getting object's field

^reflection:field[object;field name]
^reflection:field[class;field name]

Returns field of object or class.

Note: the method search field only at object or class, not at the ancestors.

Reflection class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

142Parser 3.4.3

fields. Object's fields listing

^reflection:fields[class]
^reflection:fields[object]

For class the method returns the hash with static fields.
For object the method returns the hash with dynamic fields.

method. Getting object's method

^reflection:method[object;method name]
^reflection:method[class;method name]

Returns method of object or class.
The method could be usful when the object or class field has priority over the method with the same name.

Example
$h[

$.a[1]
$.foreach[problem?]

]
foreach method can't be used directly as field foreach has a priority over it
#^h.foreach[k;v]{$k='$v'}[,]

use ^reflection:method[] for getting foreach method
$m[^reflection:method[$h;foreach]]
^m[k;v]{$k='$v'}[,]

Returns:
a='1', foreach='problem?'

method_info. Getting information about method

^reflection:method_info[class name;method name]

Returns the hash with information about the specified method of a class with the specified name.

For the system classes returns:
$hash[
 $.inherited[class name, where the method was defined]
 $.min_params(minimum required number of method's parameters)
 $.max_params(maximum allowed number of method's parameters)
 $.call_type[method's allowed call type: static, dynamic or any]
]

For the user-defined classes returns:
$hash[
 $.inherited[ancestor's class name, where the method was defined]
 $.overridden[ancestor's class name, where the inherited method was
defined] [3.4.1]
 $.file[path to file, where the method was defined] [3.4.1]
 $.max_params(maximum allowed number of method's parameters) [3.4.3]
 $.call_type[method's allowed call type: static, dynamic or any] [3.4.3]
 $.extra_param[Input parameter's name (if any) that accepts valiable number
of parameters] [3.4.3]
 $.0[the name of the first method's parameter]
 $.1[the name of the second method's parameter]
 …
]

Reflection class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

143Parser 3.4.3

methods.Class's methods listing

^reflection:methods[class name]

Returns the hash with all methods of the class with the specified name.
The keys of the hash are methods' names, the values are strings native (for the system classes) or parser
(for the user�defined classes).

uid. Get object's unique identifier

^reflection:uid[object]

Returns object's unique identifier.

Regex class
The class is designed for working with PCRE—Perl�compatible regular expression.
A regex�object is always defined (def). Numerical value of a regex�object is the size of compiled pattern (in
bytes).

35.1Constructor

create. Creating an object

^regex::create[pattern]
^regex::create[pattern][options]

Creates a regex�object from string-pattern. Pattern is a PCRE—Perl�compatible regular expression.
Some examples of PCRE are given in "Attachment 4: Perl Compatible Regular Expressions".

The following search options may be used:

i—case�insensitive;
x—ignore "white space" characters and allow #comments till the end of the line;
s—regard $ as the end of the whole text (default);
m—regard $ as the end of the line, but not the whole text;
U—inverts the "greediness" of the quantifiers so that they are not greedy by default, but become greedy if
followed by ?; [3.3.0]
g—find not only the first, but all occurrences of the pattern;
n—return number of matches instead of table with search results; [3.2.2]
'—evaluate values for prematch, match, postmatch columns.

Characters ^ and $ are used in Parser's syntax, that is why if you want to include them in your pattern, they
must be given as ^^ and ^$ respectively (see also Literals).

35.2Fields

pattern
$regex_object.pattern

The field contains the string-pattern.

options
$regex_object.options

The field contains the string-options.

Request class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

144Parser 3.4.3

Request class
Class request contains static fields, which allow getting information sent by browser to web�server (via HTTP
protocol).

To work with form fields (<FORM>) and string after second ? (/?a=b?thisText), use form.

A part of information on the request is accessible through environment variables, see "Retrieving values of
HTTP�header fields".

36.1Static fields

argv. Command line parameters

$request:argv

The field contains hash with command line parameters (keys: 0, 1, 2 etc) which can be usable while using
parser as a standalone interpreter (in cron for example).

$request:argv.0 contains the name of processing file.

body. Getting query’s text

$request:body

The field contains text of HTTP POST�query.

Example: one can create one's own XML�RPC server (see http://www.xmlrpc.com).

charset. Specifying server’s charset

$request:charset[charset]

Specifies the charset of documents processed at server.
While processing users' requests the server regards all documents as having the same charset.

The default charset is UTF�8.

The list of possible charsets is specified in Configuration method.
It is recommended to specify the documents' charset in Configuration file.

The charset, in which the result of the Parser's code will be output may be specified by $response:charset.

document�root. Root of web�space

$request:document-root[/disk/path/to/the/root/of/your/web-space]

By default $request:document-root equals the value, which is configured in web�server. But sometimes
it is convenient to change it.

See also "Paths to files and directories".

Request class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

145Parser 3.4.3

post�body. Getting query's content

$request:body

The field returns content of HTTP POST�query as a file.

post�charset. Getting the character set specified in incoming POST request

$request:post-charset

If content�type HTTP header for incoming POST request contains character set information, this character set
name will be available in this field.
During building form fields from such request the incoming data will be transcoded from this charset instead
of charset specified in $response:charset.

Note: if character set which specified in content�type HTTP header for incoming POST request wasn't pluged
in (at configuration method for example) you will receive an error message.

query. Getting the query string

$request:query

Returns the string coming after ? in URI (the value of environment variable QUERY_STRING).
To work with form fields (<FORM>) and string after second ? (/?a=b?thisText), use class form.

Example
Let us assume, a visitor requests page at

http://www.mysite.ru/news/index.html?year=2000&month=05&day=27

then

$request:query

will return

year=2000&month=05&day=27

uri. Getting the URI of the page

$request:uri

Returns document's URI.

Example
Let's assume, a visitor requests the following page:

http://www.mysite.ru/news/index.html?year=2000&month=05&day=27

Then
$request:uri

will return:
/news/index.html?year=2000&month=05&day=27

Response class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

146Parser 3.4.3

Response class
Class response allows complementing standard HTTP�responses of the server. The class doesn't have
constructors and, therefore, cannot create objects.

37.1Static fields

HTTP�response headers

$response:field[value]
$response:field

The field corresponds with HTTP�response header generated by Parser. It can be both assigned and referred
to. The value may be a date, a string or a hash with obligatory key value.

Note: during output to the browser all HTTP�response headers' names are capitalized (for example: content�
type are transformed to Content�Type). [3.4.0]

Example of redirecting a visitor to site's mainpage
#works if web-site administrator correctly configured SERVER_NAME environment
variable
#usually he/she did
$response:location[http://$env:SERVER_NAME/]

Another example of redirecting a visitor to site's mainpage
#works regardless of SERVER_NAME
$response:refresh[

$.value[0]
$.url[/]

]

Example of assigning header "expires" a value "tomorrow"
$response:expires[^date::now(+1)]

body. Specifying a new response body

$response:body[DATA]

Here, DATA substitutes for the whole response body.

DATA may be a string, file or hash of parameters.

Keys of hash of parameters: [3.1.4]
file — name of file on disk (in this case Parser supports continuing of broken downloads. [3.1.4]);
name — name of file to pass to visitor;
mdate — date and time of file last modification to pass to visitor.

If content-type of sent file is known, Content�Type header is also output to the browser (see "Fields of
object of class file").

See also $response:download.

Example of how to replace the whole body of the response with the results of the
script's work
$response:body[^file::cgi[script.cgi]]

…will replace the body of the response with the data returned by the program script.cgi.

Response class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

147Parser 3.4.3

Example of how to create and output an image
$square[^image::create(100;100;0x000000)]
^square.circle(50;50;10;0xFFFFFF)
$response:body[^square.gif[]]

As a result, the browser will output a black square with a white circle. Besides, a necessary type of file
(content�type) according to table MIME-TYPES will be reported to the browser.

charset. Specifying response charset

$response:charset[charset]

Specifies charset of the response.
The data resulted from the request's processing will be transcoded into specified charset.

The default encoding is UTF-8.

The list of possible charsets is specified in Configuration method.
It is recommended to specify the documents' charset in Configuration file.

See also "Specifying server's charset".

download. Specifying a new response body

$response:download[DATA]

This field is identical to $response:body, but it sets flag that browser interprets as "Suggest that visitor save
file to disk."

Browsers are able to display certain file types right within their windows (for example: .doc, .pdf files).
Still, sometimes we should enable a visitor to download the file by simply clicking a relevant link.

Example: outputting a PDF file
A visitor is at page with such HTML:
Download documentation

download_documentation.html:
$response:download[^file::load[binary;documentation.pdf]]

…visitor clicks the link and browser suggests Open/Download.

headers. HTTP�response headers

$form:headers

Such a construction returns hash with all HTTP�response headers set so far.

Example
$response:expires[^date::now(+1)]
^response:headers.foreach[header;value]{

$header — ^if($value is "string" || $value is "int" || $value is
"double"){$value}{not printable}
}[
]

…will output all HTTP�response headers that were set up to that moment.

Response class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

148Parser 3.4.3

37.2Static methods

clear. Cancelling re�definition

^response:clear[]

The method will cancel all actions on redefining response fields.

Status class
This class is designed for analyzing current status of a Parser script.
Using it will help you find bottle necks in your scripts.

If you use parser as Apache module you will receive error message class not found while using this class until
you don't add to httpd.conf lines:

<Location />
allow to use status class
ParserStatusAllowed
</Location>

and don't restart Apache server.

38.1Fields

memory. Information on memory—controlled by garbage collector

This field is a hash containing information on memory controlled by garbage collector.

Field Value (in kilobytes) Details
used memory used This number does not include

size of housekeeping data
used by garbage collector
itself.

free free memory Free memory is most probably
fragmented.

ever_allocated_since_compact How much memory was allocated
since last garbage cleaning, see
memory:compact.

This number constantly
increases between garbage
cleaning procedures.
Freeing memory procedures
alone do not affect it. It is
affected only by garbage
cleaning procedures.

ever_allocated_since_start How much memory was allocated
during the whole request
processing

This number constantly
increases. It is affected by
neither garbage cleaning
procedures nor freeing
memory procedures between
them.

Recommended way of analysing
Surround the block to be checked with constructions…

^musage[before XXX]
^musage[after XXX]

…to call this method:

Status class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

149Parser 3.4.3
@musage[comment][v;now;prefix;message;line]
$v[$status:memory]
$now[^date::now[]]
$prefix[[^now.sql-string[]] $env:REMOTE_ADDR: $comment]
$message[$v.used $v.free $v.ever_allocated_since_compact
$v.ever_allocated_since_start $request:uri]
$line[$prefix $message ^#0A]
^line.save[append;/musage.log]
$result[]

…and analyze the log.

Important notice: while working, Parser takes additional memory blocks from system as required. That is why
it is normal when both used and free increase from time to time.

Note: it is not recommended to store log file within web�space.

pid. Process identifier

Identifier of the OS process in which Parser is running.

rusage. Information on resources used

This field is a hash containing information on server's resources currently used by system for processing your
Parser�script.

Some systems cannot return complete range of values listed here (WinNT/Win2000/WinXP can return all
values, while Win98 can return only tv_sec and tv_usec).

Key Unit Value description How to reduce?
utime second Pure time, i.e. that used by current

process (does not include time used by
other tasks)

Simplify data manipulation within Parser
(improve algorithm, hand some actions over
to SQL�server)

stime second Time used by system to read your files,
directories, and libraries

Decrease number and size of files needed for
script's work; do not use modules which are
not needed to process current document

maxrss block Memory used by process Decrease number of loaded useless data.
Find and fix all "select *" by specifying only
the fields you will really need. Do not load
unnecessary data from SQL�server, filter out
as much as you can by means of SQL�server
itself.

Exact system time. Allows evaluating
time used for awaiting response from
SQL�, HTTP�, SMTP�servers.

How much time passed since Epoch…

Simplify SQL queries. If you use MySQL, use
EXPLAIN; for Oracle: EXPLAIN PLAN (see
your server documentation); for other SQL�
servers: see relevant documentation.

tv_sec second …whole seconds;

tv_usec millisecond
(10E�6)

…milliseconds
passed (millionths of seconds in addition
to whole seconds)

Recommended way of analysing
At the end of your script place construction…

^rusage[total]

…to call this method:

Status class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

150Parser 3.4.3
@rusage[comment][v;now;prefix;message;line;usec]
$v[$status:rusage]
$now[^date::now[]]
$usec(^v.tv_usec.double[])
$prefix[[^now.sql-string[].^usec.format[%06.0f]] $env:REMOTE_ADDR: $comment]
$message[$v.utime $v.stime $request:uri]
$line[$prefix $message ^#0A]
^line.save[append;/rusage.log]
$result[]

…and analyze the log.

For a more precise analysis, surround the block to be checked with calls…

^rusage[before XXX]
^rusage[after XXX]

Note: it is not recommended to store log file within web-space.

WinNT/2K/XP
Under these OSes, certain extra values are available:

Key Unit Value description How to reduce?
ReadOperationCount
ReadTransferCount

items
bytes

Number of operations on
reading from disk and total
number of bytes read

Decrease number and size of file
needed for the process; do not
use modules not needed for
processing current document.

Use SQL�server rather than files.
WriteOperationCount
WriteTransferCount

items
bytes

Number of operations on
writing to disk and total
number of bytes written

OtherOperationCount
OtherTransferCount

items
bytes

Number of other operations
with disk (apart from
read/write) and total number
of bytes transferred

PeakPagefileUsage
QuotaPeakNonPagedPoolUsage
QuotaPeakPagedPoolUsage

bytes Memory�paging file size limit see above comment to maxrss

tid. Thread identifier

Identifier of the OS thread in which Parser is running.

String class
The class is designed for working with strings. String is considered defined (def), if it isn't empty. If string
contains a number, the content of the string will be automatically converted to double. When used in a
mathematical expression. If the string is empty, its numerical "value" in mathematical expressions will be
regarded as zero.

Creating object of class string:
$str[content of the string]

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

151Parser 3.4.3

39.1Static methods

base64. Decoding from Base64

^string:base64[encoded]
^string:base64[encoded;$.strict(true)] [3.4.2]

Note: this is method, not a constructor!

Decodes a string from Base64 representation. To encode a string use
^string.base64[]

If option $.strict(true) is specified the exception will be raised if all characters can not be decoded.
Without this option the only charachers that are decoded successfully are returned. [3.4.2]

Detailed information on MD5 is available here http://www.ietf.org/rfc/rfc2045.txt and here
http://en.wikipedia.org/wiki/Base64.

Example
$encoded[
pyAxOTczLiBUaGVyZSBhcmUgcnVtb3VycyB0aGF0IJNHcmVlbiBzbGVldmVzlCB3ZXJlIHdyaXR0
ZW4gYnmF
]
$original[^string:base64[$encoded]]
$original

Outputs…
§ 1973. There are rumours that "Green sleeves" were written by…

js�unescape. Decoding similar to unescape function in JavaScript

^string:js-unescape[escaped]

Note: this is method, not a constructor!

Unescapes a string. This method do the transformation similar to unescape function described in ECMA�262.
Using this method you can decode strings which were escaped in browser by JavaScript function escape.

To escape a string use
^string.js-escape[]

Detailed information on ECMA�262 is available here:
http://www.ecma�international.org/publications/standards/Ecma�262.htm (B.2.2)

Note: this method also decodes symbols which were encoded as \uXXXX [3.4.1]

Example
$escaped[abcd%20%60+-
%3D%7E%21@%23%25%26*%28%29_%20%5B%5D%7B%7D%3C%3E%3A%27%22%2C./%3F%u0430%u0431%u
0432%u0433%u0434]
$original[^string:js-unescape[$escaped]]
$original

Outputs…
abcd `+-=~!@#%&*()_ []{}<>:'",./?абвгд

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

152Parser 3.4.3

sql. Retrieving string from a database

^string:sql{SQL-query}
^string:sql{SQL-query}[$.limit(1) $.offset(o) $.default{code} $.bind[variables
hash]]

Note: this is method, not a constructor!

Returns string retrieved from database through SQL�query. The query must result in only one column of
only one row. For this operator to work, you must have connection with database server established (see
operator connect).

Optional parameters:
$.limit(1) � limit response to one row only;
$.offset(o) � ignore first o records in the query results;
$.bind[hash] � variables to bind, see «Queries with bound variables» [3.1.4].
if SQL�server response was empty (0 records), …
$.default{code} …the given code will be executed and string result returned;
$.default(expression) …the given expression will be evaluated returned;
$.default[string] …the given string returned;

Example
^string:sql{select name from company where company_id=$company_id}

While using this method, it is recommendable to construct SQL�query in such a way as to limit response to one
column in one row only.

39.2Methods

base64. Encoding to Base64

^string.base64[]

Method encodes string to Base64 representation. To decode a string from Base64 to it's original, use
^string:base64[encoded]

Detailed information on MD5 is available here http://www.ietf.org/rfc/rfc2045.txt and here
http://en.wikipedia.org/wiki/Base64.

Example
$original[§ 1973. There are rumours that "Green sleeves" were written by…]
<pre>^original.base64[]</pre>

Outputs…
pyAxOTczLiBUaGVyZSBhcmUgcnVtb3VycyB0aGF0IJNHcmVlbiBzbGVldmVzlCB3ZXJlIHdyaXR0
ZW4gYnmF

format. Outputting a number in specified format

^string.format[format_string]

The method outputs variable's value in specified format (see format strings).
The string is automatically converted into a number.

Example
$var[15.67678678]
^var.format[%.2f]

The code will return 15.68

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

153Parser 3.4.3

int, double, bool. Converting string into number or bool

^string.int[]
^string.int(default value)
^string.double[]
^string.double(default value)
^string.bool[]
^string.bool(default value)

Converts value of variable $string into integer or real number or bool respectively and returns the result.

One can specify default value to be returned if conversion is impossible, a string is empty or consists of white
space characters (tabs, spaces, newlines).

Default value can be used while processing data, which is received from users interactively. It will help avoiding
text values in mathematical expressions—in cases of incorrect input (e.g. when a string is received instead of
expected number).

Note: method .bool can convert to bool not only strings with numbers (0–false, not 0–true) but strings
containing values 'true'/'false' as well (case insensitive). It can be usable for reading data from external source
(xml for example).

Note: using empty string in mathematical expressions expressions is not considered error. Its value is then
regarded as zero.

Note: attempt of converting non�integer string into integer is considered error (e.g. string "1.5" is not an
integer).

Example
$str[123]
^str.int[]

…outputs number 123, since object str can be converted into number.

$str[much]
^str.double(-1)

…outputs number -1, since conversion is impossible.

$str[1]
^if(^str.bool[]){true}

$str[True]
^if(^str.bool[]){true}

…outputs strings "true".

js�escape. Encoding similar to escape function in JavaScript

^string.js-escape[]

Escapes a string. This method do the transformation similar to escape function described in ECMA�262.
Strings, which were escaped using this method, can be unescaped in browser with JavaScript function
unescape.

To unescape a string use
^string:js-unescape[escaped]

Detailed information on ECMA�262 is available here:

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

154Parser 3.4.3
http://www.ecma�international.org/publications/standards/Ecma�262.htm (B.2.1)

Example
$value[abcd `+-=~!@#%&*()_ []{}<>:'",./?абвгд]
<pre>^value.js-escape[]</pre>

Outputs…
abcd%20%60+-
%3D%7E%21@%23%25%26*%28%29_%20%5B%5D%7B%7D%3C%3E%3A%27%22%2C./%3F%u0430%u0431%u
0432%u0433%u0434

left, right. Getting substring on the left and on the right

These methods return N first or last characters of the string respectively. If value of N is more than the string's
length, the method will output the whole string.

Example
$str[Strangers in the night…]
^str.left(7) ^str.right(9)

The code will output: Strange night…

length. Getting string's length

^string.length[]

The method returns string's length.

Example
$str[Strangers in the night…]
^str.length[]

The code will return: 23

match. Matching a pattern

^string.match[pattern]
^string.match[pattern][options]

The operator searches for a match of a pattern in a string. Pattern could be a string with PCRE—Perl�
compatible regular expression—or regex-object [3.4.0].
Some examples of PCRE are given in "Attachment 4: Perl Compatible Regular Expressions".

The following search options may be used:

i—case�insensitive;
x—ignore "white space" characters and allow #comments till the end of the line;
s—regard $ as the end of the whole text (default);
m—regard $ as the end of the line, but not the whole text;
U—inverts the "greediness" of the quantifiers so that they are not greedy by default, but become greedy if
followed by ?; [3.3.0]
g—find not only the first, but all occurrences of the pattern;
n—return number of matches instead of table with search results; [3.2.2]
'—evaluate values for prematch, match, postmatch columns.

Characters ^ and $ are used in Parser's syntax, that is why if you want to include them in your pattern, they
must be given as ^^ and ^$ respectively (see also Literals).

If option g is specified, a table with the results of the match will be created with one row per each occurrence.

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

155Parser 3.4.3
If option g is not specified, a table with the results will contain only one record with first occurrence. If
substring is not found, the result of operation will be empty table. If option n is specified, a number of
matches will be returned instead of table.

A matches' table (object of class table) contain the next columns 1, 2, …, n, prematch, match, postmatch,
where
prematch is the column with substring coming from the beginning of the string to the place where the
pattern�matching substring was found
match is the column with the pattern�matching substring
postmatch is the column with the substring that comes after pattern�matching substring and up to the end
of the entire string
1, 2, …, n are the columns with pattern�matching substrings enclosed in round brackets, where n is number of
the left bracket

Note 1: values for prematch, match, postmatch columns are evaluated only if option ' is specified.
Note 2: values for 1, 2, …, n are evaluated only if round brackets used in pattern.
Note 3: you can use (?:...) instead of (...) in pattern if you don't need some parts of matches in table with
results

Examples
$str[www.parser.ru?user=admin]
^if(^str.match[\?.+]){match found}{match not found}

The code will output: match found

$str[www.parser.ru?user=admin]
$mtc[^str.match[(\?.+)][']]
^mtc.save[match.txt]

The example will create a file match.txt, with the following table:

prematch match postmatch 1

www.parser.ru ?user=admin ?user=admin

match. Replacing pattern�matching substring

^string.match[pattern][search options]{replacer}
^string.match[pattern][search options][replacer] [3.4.0]
^string.match[pattern][search options]{replacer}{returns this if the pattern
wasn't be found in the string} [3.4.1]

The method searches the string for a match and replaces the pattern�matching substring with a substring
given in curly brackets. The search mechanism is the same as in the previously given method. Automatically
created matches' table match, described in the previous method, is available within the code.

Example
$str[2002.01.01]
^str.match[(\d+)\.(\d+)\.(\d+)][g]{Year: $match.1, month: $match.2, day:
$match.3}

The code will output: Year: 2002, month: 01, day: 01

mid. Getting substring from a specified position

^string.mid(P;N)
^string.mid(P)

The method returns substring which starts from position P and has length specified as N (if N is not given, the

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

156Parser 3.4.3
method will return the substring from position P and to the end of the string). P is counted from zero
position. If value of P+N equals more that the length of the string the method will return all characters of the
string after P.

Example
$str[Strangers in the night…]
^str.mid(2;19)

The code will output: rangers in the nigh

pos. Getting substring's position

^string.pos[substring]

^string.pos[substring](offset) [3.3.0]

The method returns a number int, that is the position of the first character of the substring (beginning with
zero), or -1 if substring cannot be found.
If offset was specified the substring will be searching from specified position.

Examples
$str[Strangers in the night…]
^str.pos[range]

The code will return: 2

$str[Strangers in the night…]
^str.pos[t](2)

The code will return: 13

replace. Replacing substrings in the string

^string.replace[table_with_substitution_settings]
^string.replace[search_string;replace_string] [3.4.2]

Replaces substrings in the string using substitution settings.

Table_with_substitution_settings is an object of class table, containing two columns:

The first contains the substring to be replaced.
The second contains the substring to replace the first one.

It is not necessary to specify column names – you may call it 'from' and 'to' or simply skip naming by using
nameless table.

Example
$s[An ugly moment I'll remember!]
Original: $s

$rep[^table::create{from to
An A
ugly magic}]
After replace: ^s.replace[$rep]

The code will output:

Original: An ugly moment I'll remember!

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

157Parser 3.4.3
After replace: A magic moment I'll remember!

save. Saving string to a file

^string.save[path_and_filename]
^string.save[append;path_and_filename]
^string.save[path_and_filename;options] [3.4.0]

Saves or appends string to a file in specified directory.
While being saved, string fragments undergo necessary transformation, see "Transforming data".

The options are hash, with such keys as:
$.charset[charset]
$.append(true)

Example
Task: retrieve data from SQL�server A and store them to SQL�server B.

If both servers are accessible from some computer, it can be done this way:

^connect[А]{
 $data[
code to fill 'data' with data from SQL-server A
]
 ^connect[Б]{
 ^void:sql{insert into table x (x) values ('$data')}
 }
}

In this case, $data in SQL�query insert will be correctly adapted to SQL�dialect used by server B.

Yet, if one CANNOT access both servers from one computer, the task may be accomplished the following
way:

^connect[А]{
 $data[
code to fill 'data' with data from SQL-server A
]
 $string[^untaint[sql]{insert into table x (x) values ('$data')}]
 ^connect[local fictitious B]{
this connection is needed
only to specify rules to conform SQL-syntax used by SQL-server B
 ^string.save[B-inserts.sql]
 }
}

In this case file B-inserts.sql will contain correctly transformed SQL�query.

split. Splitting a string

^string.split[delimiter]
^string.split[delimiter;splitting options]

^string.split[delimiter;splitting options;column name] [3.2.2]

The method splits string into substrings using delimiter substring and creates an object of class table,
containing:
• either a table with single column, where it places the resulted parts,
• or a nameless table where resulted parts are columns of single row.

Splitting options include:

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

158Parser 3.4.3
l—split from left to right (default);
r—split from right to left;
h—form nameless table with resulted parts placed horizontally;
v—form table with single column, where resulted parts are placed vertically (default).

The name of column for vertical split—"piece" or the column name passed as a parameter.

Example of using vertical split
$str[Strangers in the night…]
$parts[^str.split[the]]
^parts.save[parts.txt]

The code in the example will create file parts.txt containing…

piece
Strangers in
 night…

Example of using horizontal split
$str[/a/b/c/d]
$parts[^str.split[/;lh]]
$parts.0, $parts.1, $parts.2

…outputs:
, a, b

trim. Trimming letters

^string.trim[]
^string.trim[from]
^string.trim[from;set]

The methods trims any letters from set from ends of string. By default it trims white space characters from
the beginning and end of then string.
It can be specified, where to trim letters from, by passing one of values:
• both—trim from either the beginning or the end;
• left or start—trim from the beginning;
• right or end—trim from the end.

It can also be specified, which letters to trim.

Example: white space trimming
$name[Bob]
"$name"
"^name.trim[]"

Will output…
" Bob "
"Bob"

Example: trimming custom letters
$path[/section/subsection/]
^path.trim[right;/]

Will output…
/section/subsection

String class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

159Parser 3.4.3

upper, lower. Changing case of the string

^string.upper[]
^string.lower[]

These methods convert string to uppercase or lowercase. For this method to work, we need
$request:charset to be specified.

Example
$str[Keep off the grass!]
^str.upper[]

The code will return: KEEP OFF THE GRASS!

Table class
The class is designed for working with tables.

The table is considered defined (def) if it isn't empty. The numeric value equals the amount of rows in the
table.

40.1Constructors

create. Creating an object based on a specified table

^table::create{table_data}
^table::create[nameless]{table_data}

^table::create{table_data}[format options] [3.2.2]

The constructor creates an object of class table, using table_data defined in the constructor itself.

Table_data—data provided in tab�delimited format, that is—the columns are separated by tab symbol, while
rows are separated with a new line symbol. At that, the parts of the first row—divided by the tabulation—are
regarded as columns' names and thus a named table is created. Blank lines are ignored. If you want to create a
table without columns' names (which is actually NOT recommended), you should precede table data with
option nameless. In this case, the constructor regards the columns of the first row as table data and instead
of columns' names their ordinal numbers—starting with zero—will be used.

Only $.separator is available in format options yet.

Example
$tab[^table::create{name age
Bob 27
Alex 22
}]

A new object of class table—tab—will be created, containing two rows with columns' name and age.

create. Copying existing table

^table::create[existing_table]

^table::create[existing_table;options]

This constructor creates an object of class table by copying data from already existing table. One can also
specify a number of options to control copying, "Copying and search options".

Example

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

160Parser 3.4.3
Code…

$orig[^table::create{name
Jack
Nick
Mary
}]

sets row with "Nick" as current in $orig
^orig.offset(1)

copies data starting with current row, taking 10 records at the most
$copy[^table::create[$orig;
 $.offset[cur]
 $.limit(10)
]]

^copy.menu{$copy.name}[,]

…will output:
Nick, Mary

load. Loading table from a file or HTTP�server

^table::load[filename]
^table::load[filename;loading options]
^table::load[nameless;filename]
^table::load[nameless;filename;loading options]

The constructor creates an object using the table stored in a file or a document on HTTP�server. The data in the
file must be provided in tab�delimited format (see also table::create).

Filename—name of file with path or document's URL on HTTP�server;

Loading options—for general options read "with HTTP�servers" section, there are additional options, see
"Options of file format".

The usage of parameter nameless is the same as in constructor table::create.

Example of loading table from disk
$loaded_table[^table::load[/addresses.cfg]]

The code given in example creates an object of class table, containing named table stored in file
addresses.cfg located in the root directory of the website.

Example of loading file from HTTP�server
$table[^table::load[nameless;http://www.parser.ru/;

$.headers[
$.USER-AGENT[table load example]

]
]]
Number of rows: ^table.count[]
<hr />
<pre>$table.0</pre>

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

161Parser 3.4.3

sql. Querying database

^table::sql{SQL-query}
^table::sql{SQL-query}[$.limit(n) $.offset(o) $.bind[variables hash]]

The constructor creates an object of class table containing table based on the data retrieved from a
database. To use this constructor you must have connection with data server established (see operator
connect).

SQL-query—query sent to a database.

It is possible to use additional parameters with the constructor:
$.limit(n)—retrieve no more than n entries;
$.offset(o)—ignore first o retrieved entries;
$.bind[hash] – variables to bind, see «Queries with bound variables» [3.1.4].

Example
$sql_table[^table::sql{select * from news}]

The code will result in an object containing all data from table news.

Important notice: you should always provide exact list of fields you need.
Using "*" in queries is strongly NOT recommended, since another developer (or you yourself—in a while) will
have no idea which fields are to be retrieved from database. Moreover, by using such a construction one may
retrieve unneeded fields (say, those which were added during project's development), which will demand
additional resources for retrieving and storing superfluous data.

40.2Options of file format

When file loaded or saved there can be set column separator and column enclosing characters.

Option By default Description
$.separator[character] tab Specifies column separator character

$.encloser[character] none Specifies column encloser character

Note: if column encloser or column separator options woere set to #, the removing lines started from this
character will be disabled. [3.4.1]

Example of loading .txt file created by Miscrosoft Excel
Excel can store data into simple tab�delimited text file:

File|Save as… Text (Tab delimited) (.txt).
The data is stored in this format:
name description
"New company ""Smith&Co""" Text

(Values of several columns is quoted and quotation marks in value itself doubled)

To read such a file, one can specify this option:
$companies[^table::load[companies.txt;

$.encloser["]
]]
$companies.name

Parser can also work with .csv files, just set this option:
$.separator[^;]

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

162Parser 3.4.3

40.3Copying and search options

While copying records from one table to another, see…

table::create
table.join

and while searching records, see…

table.locate

one can specify a hash of options:
$.offset(number of rows) omit specified number of rows;

$.offset[cur] start with current table row;

$.limit(maximum) maximum rows to be processed;

$.reverse(1/0) 1=in the reverse order.

40.4Retrieving data stored in a column

$table.column_name

…returns data from a specified column in current table row.

Example
$tab.name

…will return value stored in column name of the current table row.

40.5Retrieving data stored in current row as a hash

$table.fields—data stored in the current table row, returned as hash (for nameless tables available since
[3.4.0]).

Returns data stored in the current table row as a hash. The names of the columns then become hash keys,
while columns' data—respective values.

It is necessary to use this method if columns' names coincide with names of methods or constructors of class
table. In this case you cannot retrieve their values directly—Parser will report an error. If it is necessary to
work with fields with such names, it is safe to use field fields and work with not table but hash.

Example
$tab[^table::create{menu line
yes first
no second}
]
$tab_hash[$tab.fields]
$tab_hash.menu
$tab_hash.line

As a result, you will get values of fields menu and line (such names will coincide with methods of class
table) as keys of hash tab_hash.

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

163Parser 3.4.3

40.6Methods

append. Appending data to a table

^table.append{data}
^table.append[data] [3.4.0]

The method appends data to the end of the table. The data must be provided in tab�delimited format.
The table data must have the same structure as the table to which it is appended.

Example
$stuff[^table::create{name pos
Alexander boss
Sergey coder
}]
^stuff.append{Nikolay designer}
^stuff.save[stuff.txt]

The example code will append a new row to the table $stuff and save the whole table to the disk. After it,
you cannot retrieve the value stored in the third column of the appended row, but it may be retrieved from the
saved file stuff.txt.

columns. Getting a table's structure

^table.columns[]

^table.columns[column name] [3.2.2]

The method creates named table consisting of sole field containing names of the original named table's
columns.
The name of column—"column" or the column name passed as a parameter.

Example
$columns_table[^stuff.columns[]]

count. Number of rows in table

^table.count[]
^table.count[columns|cells|rows] [3.4.2]

When calling without parameters (or with parameter rows) returns the number of rows in the table (int).
When calling with parameter columns returns the number of columns in the named table (int).
When calling with parameter cells returns the number of cells in the current row of the table (int).

Example
$goods[^table::create{pos good price
1 Monitor display 1000
2 System control unit 1500
3 Keyboard 150
4 Speakers 100
}]
Columns: ^goods.count[columns]
Rows: ^goods.count[]

The example will output:
Columns: 3
Rows: 4

In expressions, the numeric value of the table equals the amount of its rows:

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

164Parser 3.4.3
^if($goods > 2){more}

csv�string. Converting table to string in CSV format

^table.csv-string[]
^table.csv-string[options]
^table.csv-string[nameless]
^table.csv-string[nameless;options]

Outputs a table as a string in CSV format.
Using nameless option will output table without columns' names.

flip. Transposing a table

^table.flip[]

The method creates a new table nameless with entries resulted from transposing a table. That means, the
method turns columns of the given table into rows and rows into columns.

Example
$words[^table::create{id number
Zero 01
One 02
Two 03
Three 04
}]
$fliped[^words.flip[]]
^words.save[words.txt]

As the result of the code, the following table will be saved as a file named flipped.txt:

0 1 2 3

Zero One Two Three

01 02 03 04

hash. Transforming a table into hash with specified keys

^table.hash[key]
^table.hash[key][options]
^table.hash[key][column_of_values]
^table.hash[key][column_of_values][options]
^table.hash[key][table_with_columns_of_values]
^table.hash[key][table_with_column_of_values][options]

Key may be specified as:

• [string]—name of column, whose value will be regarded as key;
• {code}—code, whose result will be regarded as key;
• (mathematical expression)—whose result will be regarded as key.

With default options the method transforms table into hash of the following structure:
$hash[

$.value_of_key[
$.name_of_column[value_of_column]
…

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

165Parser 3.4.3
]
…

]

In other words, the method creates hash, where the values from the specified column serve as hash keys.
Every key is associated with a hash, where the keys are the names of all table's columns.

If a column of values is specified, every key will be associated with a hash with one key/value pair (the name
of the specified column).

Besides, one may specify several columns to serve as keys of hash relevant to the specified column—in this
case, as an additional parameter a table must be given with all necessary columns listed.

Options—hash with transformation options.
$.type[hash/string/table]
[3.2.2]

hash=each hash item contain hash (default);
string=each hash item contain string. You must specify one
column_of_values;
table=each element containing table. Using this option you can't
specify column_of_values or
table_with_column_of_values. This made for save memory
because of tables in resulting hash just have links to tables' rows which
already exist in memory.

$.distinct(true/false) false=identical values in key column are considered error (default);
true=get identical values from key column.

$.distinct[tables]
[3.0.8]

make up hash of tables containing rows with key.
Deprecated option which do the same as $.distinct(1) and
$.type[table] if they specified together.

Example
We have a list of goods, where each item has a name and a unique id. We also have a price�list of available
goods. Instead of the name of each item, we use relevant ids given in the goods list. This all is stored in two
tables, which referred to as "linked". We need to get data in the format "item�price", that is to get data from
two tables simultaneously.

Realisation:

this is the table with goods
$product_list[^table::create{id name
1 bread
2 meat
3 butter
4 whisky
}]

this is the table with prices
$price_list[^table::create{id price
1 6.50
2 70.00
3 60.85
}]

#hash of the table with prices by id field
$price_list_hash[^price_list.hash[id]]

#looking through the entries of the table with goods
^product_list.menu{
 $product_price[$price_list_hash.[$product_list.id].price]
#checking if there is a price for the item in our hash
 ^if($product_price){
#printing item's name and price
 $product_list.name—$product_price

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

166Parser 3.4.3
}{
#and this item has no price, i.e. is unavailable
 $product_list.name—unavailable

 }
}

The output will be:
 bread—6.50
 meat—70.00
 butter—60.85
 whisky—unavailable

join. Joining two tables

^table1.join[table2]
^table1.join[table2;options]

The method joins table2 data to the end of table1. Here, the method will retrieve from table2 the value
placed in the column, whose name coincides with the name of the column in table1 or a blank line (if such
column cannot be found).
One can set several options, controlling the process, see "Copying options".

Example
^stuff.join[$just_hired_people]

All entries of table $just_hired_people will be joined with table $stuff.

locate. Locating a specified value in a table

^table.locate[column_name;value_to_be_located]
^table.locate(logical_expression)
^table.locate[column_name;value_to_be_located;options]
^table.locate(logical_expression)[options]

The method locates a specified value in a specified column in the table and returns Boolean value
"true/false" depending on whether it found the value or not. In case it locates the specified value, the row
where the value is found is set as current. If the value was not located, current row is not shifted.

The second variant of calling method searches first record to conform logical_expression.

One can also specify a number of options to control search, see "Copying and search options".

Search is case�sensitive.

Example
$stuff[^table::create{name pos
Ivanov boss
Petrov engineer
Lebedev art-director
}]
^if(^stuff.locate[name;Lebedev]){

The entry is found in line ^stuff.line[].

$stuff.name: $stuff.pos

}{
No such entry

}

The code will output:
The entry is found in line 3.
Lebedev: art-director

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

167Parser 3.4.3

menu. Iterating through all table rows

^table.menu{code}
^table.menu{code}[separator]
^table.menu{code}{separator}

Method menu executes code for each of the table rows, iterating through all table rows one by one—in the
given order.

Separator is string or code to be implemented before every non�empty body, except the first. The
separator code given in square brackets is processed only once, while that in the curly brackets is processed
every time it is inserted.

You can force finish the loop using break operator or finish current step and go to next one using continue
operator. [3.2.2]

Example
$goods[^table::create{pos good price
1 Monitor display 1000
2 System control unit 1500
3 Keyboard 15
}]
<table border=1>
^goods.menu{

<tr>
<td>$goods.pos</td>
<td>$goods.good</td>
<td>$goods.price</td>

</tr>
}
</table>

The example outputs the entire content of table $goods as HTML�coded table.

foreach. Iterating through all table rows

^table.foreach[pos;value]{code}
^table.foreach[pos;value]{code}[separator]
^table.foreach[pos;value]{code}{separator}

Method foreach executes code for each of the table rows, iterating through all table rows one by one—in
the given order.

pos—name of variable to return rows' positions (from 0)
value—name of variable to return rows' values
body—code to be executed for each key�value
delimiter—string or code to be implemented before every non�empty body, except the first. The
delimiter code given in square brackets is processed only once, while that in the curly brackets is processed
every time it is inserted.

You can force finish the loop using break operator or finish current step and go to next one using continue
operator. [3.2.2]

Example
$goods[^table::create{good price
Monitor display 1000
System control unit 1500
Keyboard 15
}]
<table border="1">

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

168Parser 3.4.3
^goods.foreach[pos;row]{

<tr>
<td>^eval($pos+1)</td>
<td>$row.good</td>
<td>$row.price</td>

</tr>
}
</table>

offset and line. Getting current row offset

Method offset with no parameters specified returns current row offset with respect to the beginning of the
table.

Example
$men[^table::create{name
Jack
Joe
Roger
}]
^men.menu{
 ^men.offset[]—$men.name
}[
]

The code will return:
0—Jack
1—Joe
2—Roger

Unlike the computer, human beings tend to count beginning with one, not zero. To make the output of
numbered lists more comfortable for human understanding, you may use method line:

^table.line[]

It allows getting the position number in a more comprehensible manner—when the number of the first row
equals one. If ^men.line[] is used in the above example, the rows enumeration will start with one and end
with three.

offset. Changing current row offset

^table.offset(number)
^table.offset[cur|set](number)

Shifts current row specified number of times down. If the numeric value of parameter number is negative,
current row is shifted up. Current row shift is made cyclically—that is, having reached the last row in the table,
current row is shifted back up to the first row.

Optional parameters:
cur—shifts the offset with respect to the current row
set—shifts the offset with respect to the first row

Example
<table border="1">
^goods.offset(-1)

<tr>
<td>$goods.pos</td>
<td>$goods.good</td>
<td>$goods.price</td>

</tr>
</table>

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

169Parser 3.4.3
The given example will result in HTML�coded table containing the last row of the table from the previous
example (i.e. given in the description of method menu).

save. Saving table to a file

^table.save[path]
^table.save[path;options]
^table.save[nameless;path]
^table.save[nameless;path;options]
^table.save[append;path] [3.3.0]
^table.save[append;path;options] [3.3.0]

Saves a table in a text file in tab�delimited format.
Using nameless option will save table without columns' names.
With append option the table will be saved with columns' names only if file doesn't exist on disk.
One can also specify saving options , see "Options of file format", allowing, for example, to save a file in .csv
format to be used in programs which understand it (Miscrosoft Excel).

Example
^conf.save[/conf/old_conf.txt]

Table $conf will be saved in text file old_conf.txt in /conf/ directory.

select. Selecting entries

^table.select(selection_criterion)
^table.select(selection_criterion)[options] [3.4.1]

The method looks through the table row by row, examining each row in respect to the specified criterion
(a mathematical expression). The rows which satisfy the criterion (returned Boolean value is "true") are
collected into the table with the same structure as that of the original table.

One can specify a hash of options:
$.offset(number of rows) Omit specified number of rows.

If a negative number is specified the rows are counted from the end
of the table (�1 means the last row) [3.4.2]

$.limit(maximum) Maximum rows to be processed.

$.reverse(1/0) 1=in the reverse order.

Example
$men[^table::create{name age
Stephen 26
Alex 20
Michael 29
}]
$thoseAbove20[^men.select($men.age > 20)]

Variable $thoseAbove20 will contain table made up of rows with Stephen and Michael.

sort. Sorting table data

^table.sort{function_sorting_by_string}
^table.sort{function_sorting_by_string}[sorting_direction]
^table.sort(function_sorting_by_number)
^table.sort(function_sorting_by_number)[sorting_direction]

The given method sorts the table according to the specified function.

Table class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

170Parser 3.4.3
Sorting_function is the function, whose current value determines the position of the row in the final
(sorted) variant of the table. This value may be a string (values are compared in alphabetical order) or a
number (values are compared as real numbers).

Sorting_direction determines sorting direction. The parameter may have two values:
desc—descending
asc—ascending
Ascending value is used by default.

Example
$men[^table::create{name age
Sergey 26
Alex 20
Mishka 29
}]
^men.sort{$men.name}
^men.menu{
 $men.name: $men.age
}[
]

As the result of this code, the rows of table $men will be sorted according to the values given in column name:
Alex: 20
Mishka: 29
Sergey: 26

You may sort the table rows by the values given in column age in descending order (desc) if you substitute
the line of the code which is calling method sort for this one:

^men.sort($men.age)[desc]

The code will result in:
Mishka: 29
Sergey: 26
Alex: 20

Void class
This class is designed for working with "void" objects. It does not have any constructors—objects of this class
are created automatically, e.g. when you refer to a variable that does not exist.

All methods of class string are availbable fot this class. This mean that you can call any string's method for
undefined variable without checking if it is defined first. [3.4.1]

41.1Static method

sql. SQL�query returning no result

^void:sql{SQL-query}
^void:sql{SQL-query}[$.bind[variables hash]] [3.1.4]

This method sends SQL�query that returns no result (operations on data management in a database). For this
method to work, you must have connection with DB�server established (see operator connect).

It is possible to use additional parameter with the constructor:
$.bind[hash] – variables to bind, see «Queries with bound variables» [3.1.4].

Example
^connect[connect string]{

^void:sql{create table users(id int,name text,email text)}

Void class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

171Parser 3.4.3
}

As a result of this code's work, new table users will be created. The query will return no result. This example is
for MySQL DBMS.

XDoc class
This class is designed for working with tree�structure data, along with xnode, It supports reading files in XML
format, writing XML (http://www.w3.org/XML) and HTML, and XSLT transformation
(http://www.w3.org/TR/xslt).

Working with tree is performed in DOM model (http://www.w3.org). DOM1 and some opportunities of DOM2
are available.

Class xdoc implements DOM�interface Document and is heir to class xnode.

Errors in DOM operations DOMException) interface) are converted into exceptions of xml�type.

42.1Constructors

create. Creating a document based on specified XML

^xdoc::create{XML-code}
^xdoc::create[base_path]{XML-code}

This constructor creates object of class xdoc based on XML-code. One can also specify base path.

Example
$document[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<document>
text
</document>}]
$response:body[^document.string[]]

create. Creating a new empty document

^xdoc::create[tag_name]

^xdoc::create[base_path;tag_name]

This constructor creates object of class xdoc, containing single tag tag_name. One can also specify base
path.

Example
$document[^xdoc::create[document]]
$paraNode[^document.createElement[para]]
$addedNode[^document.documentElement.appendChild[$paraNode]]
$response:body[^document.string[]]

create. Creating a document based on specified file

^xdoc::create[file]

This constructor creates object of class xdoc based on XML-code in specified file.

Example
$file[^file::load[binary;http://server/data.xml;

$.timeout(10)
]]

XDoc class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

172Parser 3.4.3
$xdoc[^xdoc::create[$file]]
$response:body[^xdoc.string[]]

load. Loading XML from disk or HTTP�server or other source

^xdoc::load[filename]

This constructor loads XML�code from a file or document on HTTP�server and creates a new object of class
xdoc based on it.
Parser can load XML from arbitrary source, see "Reading XML from arbitrary source".

filename – path and filename or URL of document on HTTP�serve.

Example of loading a file from disk
$document[^xdoc::load[article.xml]]
$response:body[^document.string[]]

Example of loading an XML document from HTTP�server:
$xdoc[^xdoc::load[http://www.cbr.ru/scripts/XML_daily.asp]]
Rate exchange of
 $node[^xdoc.selectSingle[/ValCurs/Valute[CharCode='USD']]]
 "^node.selectString[string(Name)]"
for
 ^xdoc.selectString[string(/ValCurs/@Date)]
is
 ^node.selectString[string(Value)]
<hr />
<pre>^taint[^xdoc.string[]]</pre>

42.2parser://method/parameter. Reading XML from arbitrary source

Parser can read XML from arbitrary source.
Everywhere where XML can be read, one may specify the address of the document in this form…
parser://method/parameter

Reading a document from address like this is, in fact, reading the result of Parser ^method[/parameter]
call.

Example of keeping XSL templates in database
@main[]
…
at this point $xdoc contains a document we want to transform
^xdoc.transform[parser://xsl_database/main.xsl]

@xsl_database[name]
^string:sql{select text from xsl where name='$name'}

Relative links would be handled exactly same way as if files would be read from disk.
Say, if parser://xsl_database/main.xsl template refers to utils/common.xsl, the document
parser://xsl_database/utils/common.xsl would be read, by calling Parser method
^xsl_database[/utils/common.xsl].

42.3Parameter of creating a new document: Base path

When creating a new document with one of the constructors, one can specify parameter base_path.

Its purpose is similar to that of attribute…

<…

XDoc class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

173Parser 3.4.3
xmlns:xml="http://www.w3.org/XML/1998/namespace"
 xml:base="base URI" …

…yet, the way of specifying the path is different—it conforms with general approach to paths used in Parser
(see "Appendix 1. Paths to files and directories"), This approach is much more comfortable, since you do not
have to specify full path including that to web space. By default, path to the currently processed document is
used.
Note: character "/" at the end of the path is obligatory.

Example

$sheet[^xdoc::create[/xsl/]{<?xml version="1.0" encoding="$request:charset"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:import href="import.xsl"/>
</xsl:stylesheet>
}]

File import.xsl will be read from directory /xsl/.

42.4Methods

DOM

DOM1�interface Document:

$Element[^document.createElement[tagName]]
$DocumentFragment[^document.createDocumentFragment[]]
$Text[^document.createTextNode[data]]
$Comment[^document.createComment[data]]
$CDATASection[^document.createCDATASection[data]]
$ProcessingInstruction[^document.createProcessingInstruction[target;data]]
$Attr[^document.createAttribute[name]]
$EntityReference[^document.createEntityReference[name]]
$NodeList[^document.getElementsByTagName[tagname]]

DOM2�interface Document:

$Node[^document.importNode[importedNode](deep)]
$Element[^document.createElementNS[namespaceURI;qualifiedName]]
$Attr[^document.createAttributeNS[namespaceURI;qualifiedName]]
$NodeList[^document.getElementsByTagNameNS[namespaceURI;localName]]
$Element[^document.getElementById[elementId]]

In Parser
• DOM�interfaces Node and Element are implemented in class xnode;
• DOM�interface NodeList—is class hash with keys 0, 1, …;
• DOM�type DOMString—is class string;
• DOM�type Boolean is Boolean value: 0=FALSE, 1=TRUE.

Detailed specification of DOM1 is available at: http://www.w3.org/TR/1998/REC�DOM�Level�1�
19981001/level�one�core.html

Detailed specification of DOM1 is available at: http://www.w3.org/TR/2000/REC�DOM�Level�2�Core�
20001113/core.html

XDoc class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

174Parser 3.4.3

file. Converting document into object of class file

^document.file[Document_to_text_conversion_parameters]

This method converts object of class xdoc into object of class One can also specify
conversion_parameters. By default, method will create XML�representation of the document with
header <?xml … ?>(one can also disable this header by specifying relevant parameter).

With an option $.file[filename] file name for the created file object can be defined. [3.4.2]

Example
$document[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<document>
string1

string2

</document>}]
$response:body[^document.file[]]

save. Saving document to file

^document.save[path]
^document.save[path;Document_to_text_conversion_parameters]

This method saves document to a text file. One can also specify conversion_parameters.
By default, method will create XML�representation of the document with header <?xml … ?> (one can also
disable this header by specifying relevant parameter).

Path—path to file.

Example
$document[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<document>
string1

string2

</document>}]
^document.save[saved.xml]

string. Converting document into string

^document.string[]
^document.string[Document_to_text_conversion_parameters]

This method converts document into text. One can also specify conversion_parameters.
By default, method will create XML�representation of the document with header <?xml … ?> (This method
converts document into text. One can also specify conversion_parameters).

The result goes to visitor as-is. [3.1.4]

Example
$document[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<document>
string1

string2

</document>}]
^document.string[
 $.method[html]
]

XDoc class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

175Parser 3.4.3

transform. XSL transformation

^document.transform[template]
^document.transform[template][XSLT-parameters]

This method applies XSL transformation to the document using specified template. One can also specify
XSLT-parameters.

Template—either path_to_template_file or xdoc document.
Parser can load XML from arbitrary source, see "Reading XML from arbitrary source".

XSLT-parameters — hash of strings, which can be accessed in templates via <xsl:param … />.

Note: Parser (as Apache module or IIS) module) caches the result of template_file compilation into
internal form. Recompilation is not performed. Instead, already compiled template is taken from cache. CGI�
version caches the template, too, but for a single request only. The template is recompiled if modification date
of any of template files has changed.

Example (see also "Lesson 6. Working with XML")
source xdoc document
$sourceDoc[^xdoc::load[article.xml]]

transformation of xdoc document using template
article.xsl$transformedDoc[^sourceDoc.transform[article.xsl]]

outputting result as HTML
^transformedDoc.string[
 $.method[html]
]

If template is not loaded from disk but created dynamically, it is important to determine where <xsl:import
href="some.xsl"/> should be taken from, since, in this case, document's base path does not exist and its
directory, therefore, cannot be determined. That means, you will need to specify base path in standard
"xml:base" attribute.

42.5Document�to�text conversion parameters

Certain methods accept Document_to_text_conversion_parameters hash.

These parameters are identical to attributes of <xsl:output … />.
except doctype-public and doctype-system, which cannot be specified this way.
So far, cdata-section-elements are also excluded.

By default text rendered in $request:charset, but in XML�header or in meta element for HTML�method
Parser specifies $response:charset. This behaviour can be altered by specifying the charset in
<xsl:output … /> or corresponding conversion parameter.

While creating object of class file one can also specify parameter media-type: when new response body
body is generated, response header content-type will be assigned the value of this parameter.

Example
output document as HTML without indents and xml-declaration
^document.string[

$.method[html]
$.indent[no]
$.omit-xml-declaration[yes]
$.encoding[windows-1252]

$.charset[windows-1252] [3.4.2] the option can not be used with an option
$.encoding[] together
]

XDoc class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

176Parser 3.4.3

Outputting XHTML
If you need an XHTML output, you must specify these attributes for <xsl:stylesheet … /> element:

<xsl:stylesheet version="1.0"
xmlns="http://www.w3.org/1999/xhtml"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

>

Note xmlns without prefix specification, this should be done for all created in template prefixless elements to
get to xhtml name space. It is necessary to specify xmlns without prefix in each .xsl file, because this
parameter does not influence included files.

Also these attributes for <xsl:output … /> must be set:
<xsl:output

doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="DTD/xhtml1-strict.dtd"
/>

Note: do not specify method attribute. XHTML is an xml with a certain difference in rendering, it switches on
when any of these doctypes are used:

-//W3C//DTD XHTML 1.0 Strict//EN
-//W3C//DTD XHTML 1.0 Frameset//EN
-//W3C//DTD XHTML 1.0 Transitional//EN

42.6Fields

DOM

DOM�1 Document�interface:

$DocumentType[$document.doctype]
$Element[$document.documentElement]

In Parser, DOM interfaces Node and Element and their derivatives are implemented in class xnode.

Detailed specification of DOM1 is available at: http://www.w3.org/TR/1998/REC�DOM�Level�1�
19981001/level�one�core.html

search�namespaces. Name spaces hash to search in

$document.search-namespaces

In order to use prefixes of name spaces in xnode.select* methods one must define these prefixes in this
hash.

Here
• keys—name space prefixes,
• values—their URIs.

Adding several prefixes
$xdoc[^xdoc::create{<?xml version="1.0"?>
<document xmlns:s="urn:special">

<s:code xmlns:o="urn:other" o:attr="123">let's play hide-and-
seek</s:code>
</document>
}]
^xdoc.search-namespaces.add[
 $.s[urn:special]
 $.o[urn:other]

XDoc class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

177Parser 3.4.3
]
^xdoc.selectString[string(//s:code[@o:attr=123])]

Adding one prefix
$xdoc.search-namespaces.s[urn:special]

XNode class
This class is designed for working with tree�structured data, along with xdoc, It supports XPath
(http://www.w3.org/TR/xpath) queries.

Class xdoc implements DOM interfaces Node and Element and their derivatives.
Class is not created directly. Instead relevant methods of class xdoc are used.

Instead of DOM�interface NamedNodeMap Parser uses class hash.

XNode class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

178Parser 3.4.3

43.1Methods

DOM1

DOM1�interface Node:

$Node[^node.insertBefore[$newChild;$refChild]]
$Node[^node.replaceChild[$newChild;$oldChild]]
$Node[^node.removeChild[$oldChild]]
$Node[^node.appendChild[$newChild]]
^if(^node.hasChildNodes[]){…}
$Node[^node.cloneNode(deep)]

DOM1�interface Element:

^node.getAttribute[name]
^node.setAttribute[name;value]
^node.removeAttribute[name]
$Attr[^node.getAttributeNode[name]]
$Attr[^node.setAttributeNode[$newAttr]]
$Attr[^node.removeAttributeNode[$oldAttr]]
$NodeList[^node.getElementsByTagName[name]]
^node.normalize[]

DOM2�interface Element:

$string[^node.getAttributeNS[namespaceURI;localName]]
^node.setAttributeNS[namespaceURI;qualifiedName;value]
^node.removeAttributeNS[namespaceURI;localName]
$Attr[^node.getAttributeNodeNS[namespaceURI;localName]]
$Attr[^node.setAttributeNodeNS[$newAttr]]
$NodeList[^node.getElementsByTagNameNS[namespaceURI;localName]]
^if(^node.hasAttribute[name]){…}
^if(^node.hasAttributeNS[namespaceURI;localName]){…}
^if(^node.hasAttributes[]){…} [3.2.2]

In Parser
• DOM�interface NodeList is class hash with keys 0, 1, …;
• DOM�type DOMString is class string;
• DOM�type Boolean is Boolean value: 0=FALSE, 1=TRUE.

Detailed specification of DOM1 is available at:
 http://www.w3.org/TR/1998/REC�DOM�Level�1�19981001/level�one�core.html

Detailed specification of DOM1 is available at:
http://www.w3.org/TR/2000/REC�DOM�Level�2�Core�20001113/core.html

select. XPath search for node

$NodeList[^node.select[XPath-query]]

This method returns list of nodes found in the scope of specified node and satisfying specified XPath-
query. If no node was found, empty list will be returned.

Before using prefixes of name spaces in the query one must define them, see $xdoc.search-
namespaces.

Example
$d[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<document>
 <t/><t/>

XNode class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

179Parser 3.4.3
</document>}]
result is list of two elements "t"
$list[^d.select[/document/t]]
iterating through found lists:
this code will work
even if query returns no nodes at all
^for[i](0;$list-1){
 $node[$list.$i]
 Name: $node.nodeName

 Type: $node.nodeType

}

In Parser, DOM interface NodeList is class hash with keys 0, 1, …;

Detailed specification of XPath is available at: http://www.w3.org/TR/xpath

selectSingle. XPath search for single node

^node.selectSingle[XPath-query]

This method returns node found in the scope of specified node and satisfying specified XPath-query. If no
node was found, void is returned. If more than one node is returned exception is thrown.

Before using prefixes of name spaces in the query one must define them, see $xdoc.search-
namespaces.

Example
$d[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<t attr="hello" n="123"/>}]
result=1 element "t"
$element[^d.selectSingle[t]]
result=2 (number of attributes <t>)
Number of attributes: ^element.attributes._count[]

Detailed specification of XPath is available at: http://www.w3.org/TR/xpath

selectString. XPath search for a string

^node.selectNumber[XPath-query]

This method returns result of XPath-query in the scope of specified node, if it is a number. If resulted value
is not a number, method returns exception of type parser.runtime.

Before using prefixes of name spaces in the query one must define them, see $xdoc.search-
namespaces.

Example
$d[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<t attr="hello" n="123"/>}]
result=hello
^d.selectString[string(t/@attr)]

Detailed specification of XPath is available at: http://www.w3.org/TR/xpath

XNode class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

180Parser 3.4.3

selectNumber. XPath search for a number

^node.selectNumber[XPath-query]

This method returns result of XPath-query in the scope of specified node, if it is a number. resulted value is
not a number, method returns exception of type parser.runtime.

Before using prefixes of name spaces in the query one must define them, see $xdoc.search-
namespaces.

Example
$d[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<t attr="hello" n="123"/>}]
#result=124
^d.selectNumber[number(/t/@n)+1]

#result=4
^d.selectNumber[2*2]

Detailed specification of XPath is available at: http://www.w3.org/TR/xpath

selectBool. XPath search for a Boolean value

^node.selectBool[XPath-query]

This method returns result of XPath-query in the scope of specified node, if it is a Boolean value. If resulted
value is not a Boolean, method returns exception of type parser.runtime.

Before using prefixes of name spaces in the query one must define them, see $xdoc.search-
namespaces.

Example
$d[^xdoc::create{<?xml version="1.0" encoding="windows-1251" ?>
<t attr="hello" n="123"/>}]
^if(^d.selectBool[/t/@n > 10]){
 /t/@n greater than 10
}{
 not greater
}

Detailed specification of XPath is available at: http://www.w3.org/TR/xpath

XNode class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

181Parser 3.4.3

43.2Fields

DOM

DOM1�interface Node:

$node.nodeName
$node.nodeValue
$node.nodeValue[new value]
^if($node.nodeType == $xnode:ELEMENT_NODE){…}
$Node[$node.parentNode]
$NodeList[$node.childNodes]
$Node[$node.firstChild]
$Node[$node.lastChild]
$Node[$node.previousSibling]
$Node[$node.nextSibling]
$NamedNodeMap[$node_of_type_ELEMENT.attributes]
$Document[$node.ownerDocument]

DOM2�interface Node:
$node.prefix
$node.namespaceURI

DOM1�interface Element:

$node_of_type__ELEMENT.tagName

DOM1�interface Attr:

$node_of_type__ATTRIBUTE.name
^if($node_of_type__ATTRIBUTE.specified){…}
$node_of_type__ATTRIBUTE.value

DOM1�interface ProcessingInstruction:

$node_of_type__PROCESSING_INSTRUCTION.target
$node_of_type__PROCESSING_INSTRUCTION.data

DOM1�interface DocumentType:

$node_of_type__DOCUMENT_TYPE.name
$node_of_type__DOCUMENT_TYPE.entities
$node_of_type__DOCUMENT_TYPE.notations

DOM1�interface Notation:

$node_of_type__NOTATION.publicId
$node_of_type__NOTATION.systemId

In Parser
• DOM interface NodeList is class hash with keys 0, 1, …;
• DOM interface NamedNodeMap is class hash where the keys are attribute names;
• DOM�type DOMString is class string;
• DOM�type Boolean is Boolean value: 0=FALSE, 1=TRUE.

Detailed specification of DOM1 is available at:
http://www.w3.org/TR/1998/REC�DOM�Level�1�19981001/level�one�core.html

Detailed specification of DOM1 is available at:
http://www.w3.org/TR/2000/REC�DOM�Level�2�Core�20001113/core.html

XNode class

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

182Parser 3.4.3

43.3Constants

DOM. nodeType

DOM�elements may be of different types, element's type is stored in integer field of nodeType.
Class xdoc has the following constants, useful to check values of this field:

$xdoc:ELEMENT_NODE = 1
$xdoc:ATTRIBUTE_NODE = 2
$xdoc:TEXT_NODE = 3
$xdoc:CDATA_SECTION_NODE = 4
$xdoc:ENTITY_REFERENCE_NODE = 5
$xdoc:ENTITY_NODE = 6
$xdoc:PROCESSING_INSTRUCTION_NODE = 7
$xdoc:COMMENT_NODE = 8
$xdoc:DOCUMENT_NODE = 9
$xdoc:DOCUMENT_TYPE_NODE = 10
$xdoc:DOCUMENT_FRAGMENT_NODE = 11
$xdoc:NOTATION_NODE = 12

Example
^if($node.nodeType == $xnode:ELEMENT_NODE){
 <$node.tagName />
}

Appendix 1. Paths to files and directories, working with
HTTP�servers
To access files and directories in Parser, one may use absolute or relative paths.

Absolute path is started with slash. In this case, the file is searched for from web�space root. If a relative path
is used, the file will be searched for from directory where requested document is located.

Example of absolute path:
/news/archive/20020127/sport.html

Example of relative path:
relative to directory /news/archive…
20020127/sport.html

While a file is saved, needed directories are created automatically.

Note: the root of web�space, passed by web�server, can be cahnged: see "Root of web�space"

Note: Parser transforms paths to file-spec (see "External and internal data").

Methods…
• file::load
• table::load

…can work with external HTTP�servers, provided the name of document to be loaded starts with prefix
http://

While using these methods, one can also specify extra options to control download behavior. These options
are hash, with such keys as:

Appendix 1. Paths to files and directories, working with HTTP�servers

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

183Parser 3.4.3
Option Default Value
$.charset[charset] taken from HTTP response header Charset used in documents on rem

This charset is used to transcode re
and response body.

This option also allowed while load
files. [3.2.2]

If a text file which is loaded withou
option, contains BOM code it will b
automatically from UTF-8 to $requ
[3.4.1]

$.timeout(seconds) 2 seconds HTTP server's response timeout in s
download operation is not finished
period, exception will be thrown.

$.method[HTTP�METHOD] GET The name of HTTP-method should
in uppercase only.

It's possible to specify it in lowerca
[3.3.1]

$.enctype[CONTENT�TYPE] application/x-www-form-
urlencoded

Possible values are:
application/x-www-form-urlencode
or multipart/form-data.
Last one with method POST should
you need to send files to external
[3.3.1]

$.form[
 $.field[string]
 $.field[file]
 $.field[$table]
 …
]

none Request parameters. For GET�requ
be passed in?query_string. For
other method, parameters will be p
Content-type: application
form-urlencoded
Parameter value can be string, tabl
column or file [3.3.1].

It is preferable to pass parameters
$.forms, and not pass it in?para
hand.

It is allowed to pass parameters in b
simultaneously. [3.1.5]

$.body[string] none Text body of the query. (do not use
METHOD[GET] when you use body

$.cookies[
 $.name[value]
 …
]

none Hash with list of cookies to be pass
server. [3.2.3]

$.headers[
 $.HTTP-HEADER[value]
 …
]

$.User-Agent[parser3] Hash with additional HTTP�headers
to HTTP�server

HTTP�header's value may be a date
hash with obligatory key value.
Date may be used as either field va
attribute value. In this case, it will b
standard formatting.

$.any-status(true) false/0 Boolean: is response status not equ
allowed? If Boolean is FALSE, and r
is not equal to 200, system excepti
http.status will be thrown.

$.omit-post-charset(true) false/0 Don't add charset info to HTTP�hea
type for outgoing POST request. [3

$.response-charset[charset] none Force server output to specified cha

Appendix 1. Paths to files and directories, working with HTTP�servers

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

184Parser 3.4.3
For ^file::load[…] one can also specify additional loading options. These options are hash with such keys
as:

Option Default Value
$.offset(offset) 0 While loading data, offset is specified in

number of bytes.
$.limit(limit) �1 Load no more than specified number of

bytes

44.1Variable CLASS_PATH

One may assign variable CLASS_PATH in Configuration file. This variable contains path(s) to classes' directory
(directories). If path to a module is relative, the module will be search for in CLASS_PATH (if CLASS_PATH is
a table, rows with paths will be iterated through from bottom to top).

Example of table CLASS_PATH:

$CLASS_PATH[^table::create{path
/classes/common
/classes/specific
}]

In this case, relative path my/class.p will be searched for as:

/classes/specific/my/class.p
/classes/common/my/class.p

Appendix 2. Format strings
Format string determines the format in which a number will be represented. It has the following general
structure:
%Length.PrecisionType

Type determines the way of converting number into string.

The following types are available:

d —decimal number with sign

u —decimal number without sign

o —octal integer without sign

x —hexadecimal integer without sign; to output numbers greater than 9 one should use
letters a, b, c, d, e, and f

X —hexadecimal integer without sign; to output numbers greater than 9 one should use
letters A, B, C, D, E, and F

f —real number

Precision is how precisely fractional part is to be represented, i.e. number of digits after period. If actual
number contains more numbers than specified in Precision, the value will be rounded. Generally,
Precision is specified when format type f is used. It is not recommended to specify Precision in cases of
all other types. If Precision is not specified, f uses default value of 6. If Precision is 0, number will be
output with no fractional part at all.

Length is number of signs to be allotted for value. If actual number contains fewer symbols than specified in

Appendix 2. Format strings

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

185Parser 3.4.3
Length (e.g. Length equals 10 and actual number's value is 123), space characters will be used to substitute
lacking digits. If it is desirable to use zeros rather than space characters in such cases, one should start Length
value with 0, that is, specify value NOT as 10, but as 010. In case Length is not specified, actual number will
use as much (or as few) digits as it requires.

Appendix 3. Format of connect string used by operator connect
Connect string (except that used by ODBC) is processed by Parser's database driver.

46.1For MySQL

mysql://user:password@host[:port]|[/unix/socket]/database?
charset=value& [value must be conversion for MySQL 3.x/4.0 or character set name for

MySQL 4.1+]

ClientCharset=charset&
timeout=3&
compress=0&
named_pipe=1&
autocommit=1&

local_infile=0& [3.4.2]
multi_statements=0 [3.3.0]

Optional parameters are:

Port is number of port used by database server. One can use:
user:password@hostname:port_number/database.

One can also replace hostname and port_number with path to UNIX socket in square brackets (UNIX
socket is a magical set of characters (path), which your administrator may tell you, provided you yourself are
not the administrator in the flesh. This socket may be used to communicate with server):

user:password@[/unix/socket]/database

charset—right after connection executes "SET CHARACTER SET value";
ClientCharset—specifies the charset, in which Parser must communicate with SQL server. Conversion will
be done by driver;
timeout—specifies value of parameter Connect timeout in seconds;
compress—mode of compressing traffic between server and client;
named_pipe—use named pipes to connect to MySQL�server, working under Windows NT;
autocommit—if set to 0 after connection executes "SET AUTOCOMMIT=0";
local_infile—if set to 1, the execution of LOAD DATA [LOCAL] INFILE command is allowed (more details);
multi_statements—if set to 1, the single SQL query can contains more then one SQL statements

separated by ";" character (character ";" must be escaped by character "^").

Example: transcoding by SQL server (it works with many character sets but requires
MySQL version 4.1 or higher)
MySQL server version 4.1 or higher can transcode data in different ways itself so it is recommended to use
these server abilities using charset option and don't use ClientCharset option at all. With MySQL server
version 4.1 or higher you can even store data in different tables using different character sets but we
recommend to store it in UTF-8.

Assume, data in your database is stored in UTF-8, while pages are in windows-1257, connect string should
look like this:
mysql://user:password@host/database?charset=cp1257

In this case right after connection to the server Parser will executes command "SET CHARACTER SET
cp1257" and server will transcode received data from cp1257 to character set used for storing data in
requested database/table/column and transcode it back while send response.

Appendix 3. Format of connect string used by operator connect

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

186Parser 3.4.3
Note: in this case you should specify character set used for storing pages.
Note: this option executes the MySQL command so you must use MySQL server character set names which
are not equal to Parser character set names, defined in configuration file.

Example: DB in koi8�r, pages are in windows�1251, transcoding by SQL server
(MySQL 3.x and 4.0)
MySQL server version 3.x and 4.0 can't transcode data in arbitrary ways but can transcode it in most common
for Russian language case when data stored in koi8-r, while pages are in windows-1251.

In this case you can also transcode data with driver transcode functions using ClientCharset option (see
below), however it's much better to do it using charset option with cp1251_koi8 value:
mysql://user:password@host/database?charset=cp1251_koi8

In this case right after connection to the server Parser will executes command "SET CHARACTER SET
cp1251_koi8".
MySQL server version 3.x and 4.0 understands this option in different way, it will transcode receiving data
from cp1251 to koi8-r and transcode sending data from koi8-r to cp1251.

Note: for MySQL server version 3.x and 4.0 value defines transcode directions, herewith server is not
supported other values, for example koi8_cp1251.

Example: DB in windows�1251, pages are in koi8�r, transcoding by Parser driver (for
any version of MySQL server)
In some cases it's unable to use MySQL server transcode functions. In this case you can use driver transcode
functions with ClientCharset option.
Assume, data in your database is stored in windows-1251, while pages are in koi8-r, connect string
should look like this:
mysql://user:password@host/database?ClientCharset=windows-1251

For Parser code all received data will be automatically converted from windows-1251 to
$request:charset (koi8-r in this example).

Note: in this case you should specify character set used for storing data in database.
Note: in this option you must use Parser character set names, defined in configuration file.

46.2For SQLite

sqlite://path-to-DB-file?

autocommit=1& [3.3.0]
multi_statements=0& [3.3.0]

Path to file with database specified from document_root.
As path to file with database the driver also accepts special values :memory: and :temporary:. First one
means that for this session will be created temporary database in memory. Second one—for this session will
be created temporary database on disk (you don't need to remove database file manually).

autocommit—by default SQLite commits all queries automatically. If this option sets to 0, Parser executes
BEGIN statement at the beginning and COMMIT/ROLLBACK at the end of operator connect, so all
statements in one connect operator will be executed in single transaction;
multi_statements—if set to 1, the single SQL query can contains more then one SQL statements

separated by ";" character (character ";" must be escaped by character "^").

Examples:

Appendix 3. Format of connect string used by operator connect

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

187Parser 3.4.3
Assume, file my.db with database located in data directory which located near your document root directory.
Connect string should look like this:
sqlite://../data/my.db

Assume, you need temporary table in memory without autocommit (one connect–one transaction). Connect
string should look like this:
sqlite://:memory:?autocommit=0

46.3For ODBC

odbc://connection_string_see_ODBC_documentation?
ClientCharset=charset&

autocommit=1& [3.3.0]
SQL=MSSQL|Pervasive|FireBird [3.3.0]

ClientCharset—specifies the charset, in which Parser must communicate with SQL server. Conversion will
be done by driver;
autocommit—by default Parser executes COMMIT after each sucessfull query. If option autocommit=0 was
specified this behaviour will changed and all queries inside one connect operator will be executed in single
transaction;
SQL—if specified Parser will modify queries with limit/offset and add server specific features. For now
driver accepts only next values: MSSQL, Pervasive и FireBird. For MSSQL and Pervasive it will add to
query "TOP (limit+offset)", for FireBird — "FIRST (limit) SKIP (offset)".

We recommend this website with huge collection of connection strings to numerous databases:
www.connectionstrings.com.

Note: MS�SQL server converts dates and numbers according to language setting, which is absolutely
inconvenient in programmatic processing. We do recommend to switch language setting to us_english, which
will enable dates in ANSI SQL92 standard notation in numbers with decimal separator '.':
^void:sql{SET LANGUAGE us_english}

Examples
MS�SQL:
odbc://DRIVER={SQL Server}^;SERVER=server^;DATABASE=db^;UID=user^;PWD=password

Microsoft Access (.mdb file):
odbc://Driver={Microsoft Access Driver (*.mdb)}^;Dbq=C:\full\path\to\file.mdb

Link to system data source configured in Start|Settings|Control Panel|Data sources(ODBC).
odbc://DSN=dsn^;UID=user^;PWD=password

Note: Parser requires character ";" in connect string to be escaped by character "^".

Example
Assume, your data is in MS�SQL database in windows�1257 charset, connect string should look like this:
odbc://DRIVER={SQL
Server}^;SERVER=server^;UID=user^;PWD=password?ClientCharset=windows-
1257&SQL=MSSQL

46.4For PostgreSQL

pgsql://user:password@host[:port]|[local]/database?
charset=value& [value is pgsql charset name]
ClientCharset=charset&

autocommit=1& [3.3.0]
datestyle=value& [valid values are ISO,SQL,Postgres,European,US,German.

Appendix 3. Format of connect string used by operator connect

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

188Parser 3.4.3
ISO by default]

standard_conforming_strings=0 [3.4.3]

Optional parameters:
port—port number.

One can also specify:
user:password@host:port/database,

or:
user:password@local/database

In latter case, Parser will connect to server established at local computer.

charset—right after connection executes "SET CLIENT_ENCODING=value";
ClientCharset—specifies the charset, in which Parser must communicate with SQL server. Conversion will
be done by driver;
autocommit—by default Parser executes COMMIT after each sucessfull query. If option autocommit=0 was
specified this behaviour will changed and all queries inside one connect operator will be executed in single
transaction;
datestyle—if this parameter is specified, right after connection the driver executes "SET
DATESTYLE=value"
standard_conforming_strings—if this parameter is set to 1, the driver will not escape '\' character to
conform SQL standards.

Example
Assume, data in your database is stored in windows�1257, connect string should look like this:
pgsql://user:password@host/database?ClientCharset=windows-1257

46.5For Oracle

oracle://user:password@service?
ClientCharset=charset&
LowerCaseColumnNames=0&
NLS_LANG=RUSSIAN_AMERICA.CL8MSWIN1251&
NLS_DATE_FORMAT=YYYY-MM-DD HH24:MI:SS&
NLS_LANGUAGE=language-dependent conventions&
NLS_TERRITORY=territory-dependent conventions&
NLS_DATE_LANGUAGE=language for day and month names&
NLS_NUMERIC_CHARACTERS=decimal character and group separator&
NLS_CURRENCY=local currency symbol&
NLS_ISO_CURRENCY=ISO currency symbol&
NLS_SORT=sort sequence&
ORA_ENCRYPT_LOGIN=TRUE

ClientCharset—specifies the charset, in which Parser must communicate with SQL server. Conversion will
be done by driver.

If you do not quote columns' names in select query, oracle will convert them to UPPERCASE. By default,
Parser converts them to lowercase. By specifying LowerCaseColumnNames=0 one can disable this lowercase
conversion.

While execution queries with limit/offset the driver modifies statements for cutting off not redundant
data using SQL server instructions. But if any problems occurs this behaviour can be switched off with
option DisableQueryModification=1.

Information on other parameters can be found in Oracle documentation.
Example

Appendix 3. Format of connect string used by operator connect

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

189Parser 3.4.3
Assume, data in your database is stored in windows�1257, connect string should look like this:
oracle://user:password@service?ClientCharset=windows-
1257&NLS_LANG=RUSSIAN_AMERICA.CL8MSWIN1251&NLS_DATE_FORMAT=YYYY-MM-DD
HH24:MI:SS

46.6ClientCharset. Connect parameter—charset of communication with SQL
server

Parameter ClientCharset specifies charset, in which Parser should communicate with SQL server. If
parameter is not defined, Parser communicates with SQL server in $request:charset.

List of charsets is defined in Configuration file.

Appendix 4. Perl Compatible Regular Expressions
Detailed information on PCRE (Perl Compatible Regular Expressions) can be found in Perl documentation (see
http://perldoc.perl.org/perlre.html), in documentation on PCRE used by Parser (see
http://www.pcre.org/man.txt), as well as in many other sources which also contain many practical
examples. Most detailed information on regular expressions is given in Regular Expressions by J. Friddle,
O'Reilly (ISBN 1�56592�257�3).

A draft description given here is only a short reference.

A regular expression is a pattern that is matched against a subject string from left to right. Most characters
stand for themselves in a pattern, and match the corresponding characters in the subject. As a trivial example,
the pattern "The quick brown fox" matches a portion of a subject string that is identical to itself. The power
of regular expressions comes from the ability to include alternatives and repetitions in the pattern. These are
encoded in the pattern by the use of meta�characters, which do not stand for themselves but instead are
interpreted in some special way.

There are two different sets of meta�characters:
1. Those that are recognized anywhere in the pattern except within square brackets;
2. Those that are recognized in square brackets.

Outside square brackets, the meta�characters are as follows:

Appendix 4. Perl Compatible Regular Expressions

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

190Parser 3.4.3
\ general escape character with several uses, more detailed description is

given later

^ assert start of subject (or line, in multiline mode)

$ assert end of subject (or line, in multiline mode)

. character class containing all characters; match any character except
newline

[...] character class definition. Matches any of bracketed characters

| meta�character "OR": allows joining several patterns into one set of
alternative matches

(...) delimit subpattern within general match pattern

? match 1 non�alphanumeric character

* match 0 or more of any characters, specified on the left

+ match 1 or more of any characters, specified on the left

{min, max} minimum/maximum quantifier: require minimum occurrences, allow
maximum occurrences.

Part of a pattern that is in square brackets is called a "character class". In a character class the only meta�
characters are:

\ general escape character

^ negate the class, but only if the first character of class definition, any
characters but those in class will match

- indicates character range

[...] terminates the character class

Backslash usage ("\")

The backslash character has several uses. Firstly, if it is followed by a non�alphameric character, it takes away
any special meaning that character may have. This use of backslash as an escape character applies both inside
and outside character classes. For example, if you want to match a "*" character, you write "*" in the pattern.
This applies whether or not the following character would otherwise be interpreted as a meta�character, so it
is always safe to precede a non�alphameric with "\" to specify that it stands for itself. In particular, if you
want to match a backslash, you write "\\".

A second use of backslash provides a way of encoding non�printing characters in patterns in a visible manner.
It is usually easier to use one of the following escape sequences than the binary character it represents:

\a alarm, that is, the BEL character
\cx "control�x", where x is any character
\e escape, the ASCII character
\f formfeed
\n newline
\r carriage return
\t tab
\xhh character with hex code hh

Appendix 4. Perl Compatible Regular Expressions

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

191Parser 3.4.3
\ddd character with octal code ddd

The third use of backslash is for specifying generic character types:

\d any decimal digit [0�9]
\s any white space character
\w any "word" character
\D \S \W NOT \d \s \w

The fourth use of backslash is for certain simple assertions. An assertion specifies a condition that has to be
met at a particular point in a match, without consuming any characters from the subject string. These
assertions may not appear in character classes (but note that "\b" has a different meaning, namely the
backspace character, inside a character class).

\b word boundary
\B not a word boundary
\A start of subject (independent of multiline mode)
\Z end of subject or newline at end (independent of multiline mode)
\z end of subject (independent of multiline mode)

Appendix 5. How to name variables, methods, and classes
correctly
A name should be clear at least to you, and ideally—to anyone else reading your code. The name may be in any
language. The only principle you should stick to is uniformity. We however recommend that you use English
language (what if you become world�famous one day?). Words in names had better be in singular. Whenever
a need occurs, use compound names like "column_color": it is always easy to understand what such a name
implies.

Parser is case�sensitive!

$Parser and $parser are different variables!

There are certain characters which should not be used in names. In Parser, name ends before:
space character
tab character
newline character
;] }) " < > # + * / % & | = ! ' , ?
character "�" in expressions.

Code…

$var[value_of_variable]
$var>text

…outputs…

value_of_variable>text

…, i.e. Parser regards character ">" as end of name of variable $var and outputs its value. That is why the
characters listed above had better be avoided in names.

Whenever one needs any of characters not listed above to immediately (i.e. with nothing in between) follow a
variable's value, one should use syntax:
${var}.text

In this case, the output will be:
value_of_variable.text

One must NOT use characters ".", ":", "^" in names, since these will be regarded as part of Parser's code,

Appendix 5. How to name variables, methods, and classes correctly

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

192Parser 3.4.3
which will inevitably cause errors during code processing.

All other symbols are allowed, theoretically. We however recommend that you use no special characters at all
when giving names, except in case you really have to (that is, practically, NEVER). The only character we
recommended to use is underscore, which is not reserved by Parser and whose meaning is clear enough.

Appendix 6. How to fight errors and read someone else’s code
To begin with, study exception message carefully. It contains name of file and number of line where error
cropped up. You should be very attentive when coding and turn to reference from time to time. You should
also always remember that Parser operates in object model: never forget what class of objects you use.
Certain methods return an object of different class!

For example, certain methods of class date return object of class table. If you attempt to apply methods of
class date to such an object, it will cause error. You can NOT apply method of one class to an object of
different class. This stage, however, will soon be over. Errors of another type are those, which lie in the code's
logic. This kind of problem is not that easy to solve and demands more patience. We insist that you give
correct names to variables, methods, and classes and comment your code.

If you still are not able to realize what the mistake is—turn to the reference. "If all else fails, try reading the
instructions…" The last stage in trying to fight an error is when you are on the verge of madness: you read your
prayers or cast spells, but your code does not work anyway. In this case, you should turn to those who know
Parser a little better than you: post your question to forum dedicated to Parser, and they will try to help you.
You are not alone! Good luck!

Appendix 7. SQL queries with bound variables
Parser's Oracle SQL driver can work with bound variables. IN, OUT and IN/OUT variables are supported, they
are bound to hash you pass to query.

There are known problems with CALL and EXECUTE constructs in Oracle versions, we recommend using
PL/SQL wrapper (begin …; end;), do not forget to escape «;» character.

Note: values of void type correspond to NULL. In second example below days is initially NULL.

Example of using IN variables

#procedure ban_user(user_id in number, days in number)

^void:sql{begin ban_user(:user_id, :days)^; end^;}[
 $.bind[
 $.user_id(7319)
 $.days(10)
]
]

Example of using IN and OUT variables

#procedure read_user_ban_days(user_id in number, days out number)

$variables[
 $.user_id(7319)
#we still must pass something in, though current value will be discarded
 $.days[]
]

^void:sql{begin read_user_ban_days(:user_id, :days)^; end^;}[
 $.bind[$variables]
]

Appendix 7. SQL queries with bound variables

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

193Parser 3.4.3
User is banned for $variables.days days!

Installing and configuring Parser
Parser is available as:
• CGI�script (and interpreter);
• ISAPI extension of Microsoft Internet Information Server, version 4.0 or higher.

One can also install drivers for various SQL�servers (currently supported: MySQL, PgSQL, Oracle, ODBC and
SQLite).

Description of directories and files:
parser3[.exe] � CGI�script (and interpreter);
parser3isapi.dll � ISAPI extension of Microsoft Internet Information Server, version 4.0 or higher.

auto.p.dist � example of Configuration file

parser3.charsets/ – � directory with charset tables:
cp866.cfg – Cyrillic [CP866]

koi8-r.cfg – Cyrillic [KOI8�R]

koi8-u.cfg – Cyrillic [KOI8�U]

windows-1250.cfg – Central european [windows�1250]

windows-1251.cfg – Cyrillic [windows�1251]

windows-1254.cfg – Turkish [windows�1254]

windows-1257.cfg – Baltic [windows�1257]

x-mac-cyrillic.cfg – Macintosh Cyrillic

As long as Parser is open�source project, you can compile it on your own (see "Compiling Parser from source
code") and create your own SQL�driver.
Already compiled versions of Parser and SQL�drivers for certain platforms are available at
http://www.parser.ru/en/download/.
Note: for security reasons, these versions were compiled in such a way that they can read and execute only
those files which belong to the user or user group under the name of which Parser itself works.

How are configuration files linked?

For CGI�script (parser3[.exe]):
configuration file is read from file specified in environment variable CGI_PARSER_CONFIG.
If this variable is not defined, Parser will search for the file in directory with CGI�script itself.

For ISAPI extension (parser3isapi.dll):
configuration file will be searched for in the directory with .dll file itself.

51.1Configuration file

Exemplary of file is included in distribution package (see auto.p.dist).

This is the cornerstone of class MAIN. It may contain configuration method, which will be executed first,
before method auto, to set vital system parameters.

After configuration method is executed, output charset and code charset may be specified (default charset in
both cases is UTF-8).

Recommended code:
@auto[]
#source/client charsets

Installing and configuring Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

194Parser 3.4.3
$request:charset[windows-1251]
$response:charset[windows-1251]
$response:content-type[

$.value[text/html]
$.charset[$response:charset]

]

Note: if you want methods upper and lower (class string) to work with languages other than English
correctly, you will need to correctly specify $request:charset.

It is also recommended that you specify path to classes used at your site here:
$CLASS_PATH[/../classes]

…as well as connect string for SQL�server you are going to use (example for ODBC):
$SQL.connect-string[odbc://DSN=www_mydomain_ru^;UID=user^;PWD=password]

Note: it will be used in your code like…
^connect[$SQL.connect-string]{…}

It is recommended that you also define method unhandled_exception, which will output error messages
on problems at your site.

Note: configuration file is definitely optional. You can place your configuration method in file auto.p in your
web�space root. Configurations, however, will most probably be different for different hosting locations (for
example: debug and production servers). That is why it would be more comfortable to keep these differences
in a separate file outside web�space.

Configuration method

If configuration file contains method conf, this method will be executed first, before method auto, to set
vital system parameters:
• Files defining character sets;
• HTTP POST�request size limit;
• Mail�sending server/application;
• SQL�drivers and their parameters;
• Table to associate filename extension with its mime�type.

We recommend that you place this method in in configuration file.

Method is defined like the following:
@conf[filespec]

…where filespec is full name of file containing the method.

Charset UTF-8, used in Parser by default, is always available and thus doesn't have to be loaded. To use other
charsets, specify files defining them. This should be done in the following way:
$CHARSETS[
 $.windows-1251[/full/path/to/windows-1251.cfg]
 …
]

See "Files defining character sets".

Size limit for POST data:
$LIMITS[
 $.post_max_size(10*0x400*0x400)
]

Parameters for mail�sending program (see ^mail:send[…])…

…under Windows and UNIX—SMTP�server address

Installing and configuring Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

195Parser 3.4.3
$MAIL[
 $.SMTP[mail.office.design.ru]
]

…under UNIX:

in safe mode versions you can configure mail�sending program only if you compile Parser from source code,
by yourself. Binary versions, which are available for download directly from
http://parser.ru/en/download/, configure mail�sending in such a way:

 /usr/sbin/sendmail -i -t -f postmaster

It is only in unsafe�mode versions that you can specify mail�sending program by yourself:
$MAIL[
 $.sendmail[/custom/mail/sending/program params]
]

…and by default Parser uses command…

 /usr/sbin/sendmail -t -i -f postmaster

…or command…

 /usr/lib/sendmail -t -i -f postmaster

…depending on system you use.

When a message is being sent, Parser will replace "postmaster" with mail�sender's address from obligatory
header field "from".

One can also provide a table of SQL�drivers:
$SQL[
$.drivers[^table::create{protocol driver client
mysql /full/disk/path/parser3mysql.dll /full/disk/path/libmySQL.dll
odbc /full/disk/path/parser3odbc.dll
pgsql /full/disk/path/parser3pgsql.dll /full/disk/path/libpq.dll
sqlite /full/disk/path/parser3sqlite.dll /full/disk/path/sqlite3.dll
oracle /path/to/parser3oracle.dll C:\Oracle\Ora81\BIN\oci.dll?PATH+=^;C
:\Oracle\Ora81\bin
}]
]
Column client of table drivers may contain parameters passed to client's library, delimited from file name
with character ?. The whole construction will look like:
name1=value1&name2=name2&…
…as well as…
name+=value
These variables will replace (=) or be appended to (+=) already existing value in program environment before
the library is initialized. Such an approach is particularly useful when you add path to Oracle libraries, if this
path has not been already specified in program's system environment.

Table to associate filename extension with its mime�type:

file created with ^file::load[…],
will specify this $response:content-type when output in $response:body
$MIME-TYPES[^table::create{ext mime-type
7z application/x-7z-compressed
au audio/basic
avi video/x-msvideo
css text/css
cvs text/csv
doc application/msword
docx application/vnd.openxmlformats-officedocument.wordprocessingml.document

Installing and configuring Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

196Parser 3.4.3
dtd application/xml-dtd
gif image/gif
gz application/x-gzip
htm text/html
html text/html
ico image/x-icon
jpeg image/jpeg
jpg image/jpeg
js application/javascript
json application/json
log text/plain
mid audio/midi
midi audio/midi
mov video/quicktime
mp3 audio/mpeg
mpg video/mpeg
mpeg video/mpeg
mts application/metastream
pdf application/pdf
png image/png
ppt application/powerpoint
ra audio/x-realaudio
ram audio/x-pn-realaudio
rar application/x-rar-compressed
rdf application/rdf+xml
rpm audio/x-pn-realaudio-plugin
rss application/rss+xml
rtf application/rtf
svg image/svg+xml
swf application/x-shockwave-flash
tar application/x-tar
tgz application/x-gzip
tif image/tiff
txt text/plain
wav audio/x-wav
xls application/vnd.ms-excel
xlsx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
xml text/xml
xsl text/xml
zip application/zip
}]

File name extensions in this table should be given in lowercase. Table search is case�insensitive, so, for
example, file FACE.GIF will acquire mime�type image/gif.

If $STRICT-VARS(true) is specified every attempt to access to uninitialized variable will cause an
exception. [3.4.2]

File defining charset: format description

The data is represented in tab�delimited format. The columns are:

char—character or its code in decimal or hexadecimal (0xHH) representation in charset specified by this file.

white-space, digit, hex-digit, letter, word—a set of flags specifying the class that the character
belongs to. Empty field means the symbol does not belong to this class, whereas non�empty field (e.g. 'x')
means it does.

For more detailed information on character classes see regular expressions description in special literature.

Installing and configuring Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

197Parser 3.4.3
lowercase—if character has a pair in lowercase, the field contains this pair (as either character or code). For
example, 'W' pairs with 'w'. This field is used in regular expressions for case�insensitive search, as well as in
methods upper and lower of class string.

unicode1—character's main Unicode value. If it coincides with character code, this field can remain empty.

unicode2—character's additional Unicode value, if exists.

51.2Installing Parser on web�server as CGI

To install Parser, one should make changes to server's main configuration file. If you are not authorized to
make such changes, you should be able to use .htaccess files.

By default, Apache has usage of .htaccess disabled.
You will need to enable it (at least allow specifying FileInfo) by adding directives to server's configuration
file (usually httpd.conf), inside <virtualhost …> section allotted to your site or outside it—for all sites:

<Directory /path/to/your/web/space>
AllowOverride FileInfo
</Directory>

Place Parser's executable file (in current version, parser3.cgi) into your CGI scripts directory (if you upload it
using ftp you must do it in binary mode) and set necessary rights (ask your hosting provider for details, but
usually it's—755).

Under UNIX:
Add these blocks to your .htaccess file (or httpd.conf—inside <virtualhost …> section allotted for
your site or outside it—for all sites):

Action parser3-handler /cgi-bin/parser3.cgi
AddHandler parser3-handler html

deny access to .p files, mainly: auto.p
<Files ~ "\.p$">
 Order allow,deny
 Deny from all
</Files>

Under Windows:
Add these blocks to your .htaccess file (or httpd.conf—inside <virtualhost …> section allotted for
your site or outside it—for all sites):

Action parser3-handler /cgi-bin/parser3.exe
AddHandler parser3-handler html

deny access to .p files, mainly: auto.p
<Files ~ "\.p$">
 Order allow,deny
 Deny from all
</Files>

If you would rather change implicit configuration file (see "Installing and configuring Parser") location, you
can explicitly specify it :

assign environment variable containing path to auto.p
SetEnv CGI_PARSER_CONFIG /path/to/file/auto.p

Note: In this case, you will need Apache module mod_env, which is, however, installed by default.

Parser makes records about errors to error log file parser3.log, which is implicitly located in the same
directory where parser3 CGI script is. If Parser is not allowed to write to that file, errors are reported to

Installing and configuring Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

198Parser 3.4.3
standard error stream and are recorded in web�server error log file. If you would rather change implicit
location of parser3.log, you can explicitly specify it.

assign environment variable containing path to parser3.log
SetEnv CGI_PARSER_LOG /path/to/file/parser3.log

Note: In this case, you will need Apache module mod_env, which is, however, installed by default.

51.3Installing Parser on web�server Apache as module

To install Parser, one should make changes to server's main configuration file. If you are not authorized to
make such changes, you should be able to use .htaccess files.

By default, Apache has usage of .htaccess disabled.
You will need to enable it (at least allow specifying FileInfo) by adding directives to server's configuration
file (usually httpd.conf), inside <virtualhost …> section allotted for your site or outside it—for all sites:

<Directory /path/to/your/web/space>
AllowOverride FileInfo
</Directory>

Under UNIX:
You will need to compile Parser from source codes by running script buildall with option --with-
apache.
Add these lines to httpd.conf, after existing LoadModule directives:

load module dynamically
LoadModule parser3_module /path/to/mod_parser3.so

Under Windows:
You need to compile Apache server module with Microsoft Visual Studio.NET (2003 or higher).
Place Parser's executable file (in current version, mod_parser3.dll) into an arbitrary directory.
Add these lines to httpd.conf, after existing LoadModule directives:

load module dynamically
LoadModule parser3_module x:\path\to\mod_parser3.dll

Note: If necessary, place accompanying .dll files into the same directory.

Add these blocks to your .htaccess file (or httpd.conf—inside <virtualhost …> section allotted for
your site or outside it—for all sites):

declare Parser as .html files handler
AddHandler parser3-handler html

specify configuration file
ParserConfig x:\path\to\parser3\config\auto.p

deny access to .p files, mainly: auto.p
<Files ~ "\.p$">
 Order allow,deny
 Deny from all
</Files>

51.4Installing Parser on web�server IIS, version 5.0 or higher

Place Parser's module executables (parser3isapi.dll in current version) into an arbitrary directory. If you
use version with XML support, unpack XML libraries into directory specified in environment variable PATH (for
example C:\WinNT).

Installing and configuring Parser

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

199Parser 3.4.3
Having placed files to needed locations, you need to declare Parser as .html files handler:

1. Run Management Console, right�click icon with your web server and choose Properties;
2. Go to Application settings and under Home directory click on the Configuration button;
3. Click Add;
4. In the Executable box, type full path to parser3.exe or parser3isapi.dll;
5. In the Extension box, type .html;
6. Check Check that file exists box;
7. Click OK.

mod_rewrite analogue

For IIS web server there is no built in analogue to Apache module mod_rewrite, there are only modules by
third parties.

But one can set up any arbitrary page handler.html as handler of 404 page (we also recommend set it up
as a handler for 403.14 and 405 errors).

Original uri accessible in $request:uri.

Regretfully when IIS handles POST requests which have no document name (…/), IIS does not pass POSTed
body to CGI�scripts.
Possible walkaround:for such pages set this action:
<form action="form.html"…
and handle inevitable "form.html file not found" error in @unhandled_exception and suppress writing it
to error log.

51.5Using Parser as standalone interpreter

/path/to/parser3 script_file
x:\path\to\parser3 script_file

You can use Parser to interpret scripts with no web�server running. In this case you will just need to run Parser
in command line with parameter—name of script to be interpreted. In this case, current directory will be
considered web�space root.

Errors will get into standard error stream, which can be redirected to needed file:

command 2>>error_log

Note: do not forget to clean it up between whiles.

When working under UNIX, one can also take standard approach, which is specifying path to interpreter in
script's first line:

#!/path/to/parser3
#your code
Check: ^eval(2*2)

Note: do not forget to set attributes allowing owner/user group to run the script. It can be done with:
chmod ug+x file

Source codes
Parser's source codes can be downloaded from "Download" section on parser.ru web�site or via CVS:
cvs -d :pserver:anonymous@cvs.parser.ru:/parser3project login
Password string is empty.

Source codes

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

200Parser 3.4.3
cvs -d :pserver:anonymous@cvs.parser.ru:/parser3project get -r branch_name
module_name

Branch_name—having specified no -r, you will get currently developed version (HEAD).
To get a stable version, get branch "release_3_X_X" (for example release_3_4_3).

Module_name:
Name of main module: parser3

Module, required for compiling Parser3 and SQL drivers under Windows: win32

Module with SQL drivers: sql
It presently has the following directories:
sql/mysql
sql/pgsql
sql/oracle
sql/odbc
sql/sqlite

To compile SQL drivers the source codes of Parser3 are required. Because of some .h files included using
relative path, the directory structure must be the next:

parser3project <- directory where you decide to put source codes for Parser3 project
 |
 +-parser3 <- Parser3 source codes
 |
 +-sql
 | +-mysql <- mysql driver source codes
 | +-... <- source codes for other SQL drivers
 |
 +-win32 <- tools that are required for compiling Parser3 under Windows

52.1Compile under *nix

To compile Parser3 under *nix you need to execute script buildall.

So the typical process for downloading and compiling Parser3 should look like that:

cd ~
mkdir parser3project
cd parser3project
wget http://www.parser.ru/off-line/download/src/parser-3.4.3.tar.gz
tar -xzf parser-3.4.3.tar.gz
mv parser-3.4.3 parser3
cd parser3
./buildall

Script buildall supports the following options:
--disable-safe-mode–enable reading and executing files, not belonging to group+user other then
effective.
--without-xml–build Parser3 without XML support.
--with-mailreceive–enable mail receive feature (by starting Parser3 with an option -m the passed into
stdin email will be accessible in $mail:receive)
--with-apache–build apache module (DSO, apache versions 1.X and 2.X are supported).
--strip–remove debug info.

Compiling SQL drivers should look like that:

Source codes

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

201Parser 3.4.3
cd ~/parser3project
mkdir sql
cd sql
wget http://www.parser.ru/off-line/download/src/parser3mysql-10.5.tar.gz
tar -xzf parser3mysql-10.5.tar.gz
cd parser3mysql-10.5
./configure
make

52.2Compile under Windows

To compile Parser3 under Windows, use Microsoft Visual Studio.NET (2003 or higher) and use .sln files
contained with each module. Unpack all modules to one directory, parser3project for example.

To compile Parser3 you need directories:
win32/tools
win32/gc
win32/pcre
win32/gnome/libxml2-x.x.x
win32/gnome/libxslt-x.x.x

To compile SQL drivers you need directories:
win32/sql

To compile Parser3 without XML support you have to remove/comment into the file
parser3/src/include/pa_config_fixed.h a directive:
#define XML

Index
� � �
� 52

� ! �
! 52
!| 52
!|| 52
!= 52

� # �
54

� % �
% 52

� & �
& 52
&& 52

� * �
* 52

� . �
.csv * 161
.htaccess * 131

� / �
/ 52

� @ �
@GET_name 47
@SET_name[value] 47

� \ �
\ 52

� _ �
_count 108
_default 105, 107
_keys 107

� | �
| 52
|| 52

� ~ �
~ 52

� + �
+ 52

� < �
< 52
<= 52
<FORM … 101
<IMG ... 116
<IMG ISMAP … 102
<xsl:output … 175
<xsl:param * 175

� = �
== 52

� > �
> 52
>= 52

� A �
abs 131
acos 134
Action * 197
adate 94
add 110
AddHandler * 197
alt 116
and * 52
Apache 197, 198
Apache module 198

Index 202

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

apache passwords * 131
append 163
appendChild 178
arc 117
argv 144
asc 169
asin 134
as�is 62
at service * 199
atan 134
ATTRIBUTE_NODE 182
attributes 181
auto 42, 73
auto.p 15, 20, 25, 31, 193, 197, 198

� B �
background * 114
banner system * 103
bar 118
BASE 42
base * 172
base64 90, 96, 151, 152
basename 100
binary 96
bind variables * 192
body 144, 146
body * 128
bool 50, 74, 87, 153

Class 74
Methods 87

border 116
bound variables * 192

� C �
cache 59
calendar 85
caller 44
caller.self 44
case 56
case * 159
catch * 68
cbr * 172
CDATA_SECTION_NODE 182
cdate 94
ceiling 134
cgi 91, 197
CGI_ * 88, 91
char 196
charset 72, 128, 144, 147, 185

CharsetDisable * 197
charsets 193, 194, 196
childNodes 181
circle 118
CLASS 40, 42, 44
CLASS_PATH 184
cleanup 113
clear 148
ClientCharset 189
clone * 105, 159
cloneNode 178
columns 163
comment 54, 68
comment * 20, 61
COMMENT_NODE 182
compact 139
compile 199
Compiling Parser from source code 193
conf 193, 194
connect 58, 185, 186, 187, 188, 189

Format of connect string 185, 186, 187, 188, 189

console 74
Static field 74
Сlass 74

constructor * 40
contains 109
content�type 128
content�type * 146
cookie 62, 74, 75

Acessing 74
Class 74
Static fields 75
Storing 75

copy 98, 118
copy * 159
cos 134
count 163
count * 108
counter * 99
cp * 98
crc32 97, 101, 131
create 72, 80, 81, 92, 105, 114, 120, 159, 171
create table * 170
createAttribute 173
createCDATASection 173
createComment 173
createDocumentFragment 173
createElement 173
createElementNS 173
createEntityReference 173
createProcessingInstruction 173

Index 203

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

createTextNode 173
cron * 199
crypt 131
cur 168
currency * 172
CVS 199

� � �
�d 52, 53

� D �
dashed * 117
date 80, 81, 82, 84, 85, 86

Class 80
Constructors 80, 81, 82
Fields 82
Methods 84, 85
Static methods 85, 86

day 82, 84
daylightsaving 82
deadlock * 99, 112
dec 87
def 52, 53, 150, 159
default 88, 105, 107, 152
degree 132
delete 97, 109, 113
delete from * 170
desc 169
diagram * 146
digest * 97, 101, 133
digit 196
dir * 98
directory * 99, 197
dirname 99
div 87
DOCUMENT_FRAGMENT_NODE 182
DOCUMENT_NODE 182
DOCUMENT_ROOT * 144
DOCUMENT_TYPE_NODE 182
document�root 144
DocumentRoot * 144
DOM 36, 171, 173, 176, 177, 178
DOM1 173, 176, 178
DOM2 173, 178
domain 75
dotted * 117
double 50, 86, 87, 88, 153

Class 86
Methods 86, 87, 88

download 147
download * 146
draw * 114
drivers * 194
DSN 187

� E �
ELEMENT_NODE 182
ellipse * 117, 123
encoding * 194
eng 85
ENTITY_NODE 182
ENTITY_REFERENCE_NODE 182
env 62, 88, 89, 91

Class 88
Retrieving values of HTTP�header fields 89
Retriving Parser version 89
Static fields 89

eq 52
equal * 52
error * 192
eval 54
eval comment * 54
ever_allocated_since_compact 148
ever_allocated_since_start 148
Excel * 161
exception 68, 71, 192
exec 91
EXIF * 114, 115
exists * 53
exp 133
expires 75, 112
expires * 147
extension * 100

� � �
�f 52, 53

� F �
false 50
fields 75, 103, 107, 162
file 68, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101,
128, 171, 174

Class 90
Constructors 90, 91, 92, 93, 94
Fields 94
Methods 96, 97
Static methods 97, 98, 99, 100, 101

Index 204

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

file.access 68
file.missing 68
file::load 182
filename * 100
files 104
Files * 197
file�spec 62
fill 119
filled 118, 120
filled * 123
filter * 169
find 97
find * 154
firstChild 181
firstthat * 166
flip 164
floor 134
font 119
footprint * 97, 101, 133
for 57
foreach 108, 113
foreach * 167
form 62, 101, 102, 103, 104, 153

Class 101
Static fields 102, 103, 104

format 86, 152
format * 54
format specifiers * 184
frac 135
free 148
from 128
fullpath 100

� G �
ge 52
GET * 101
GET_name 47
getAttribute 178
getAttributeNode 178
getElementById 173
getElementsByTagName 173, 178
getElementsByTagNameNS 178
getter * 47
GIF 114, 116
GIF * 115, 116
gmtime * 84
graph * 146
greater or equal * 52
greater then * 52
Green sleeves* 151, 152

gt 52
GUID * 135

� H �
handled 68
has intersection * 111
hasAttribute 178
hasAttributeNS 178
hasAttributes 178
hasChildNodes 178
hash 39, 53, 105, 107, 108, 109, 110, 111, 114, 164

Class 105
Constructors 105
Fields 107
Methods 107, 108, 109, 110, 111
Using hash instead of table 107

hashfile 111, 112, 113, 114
Class 111
Constructor 112
Methods 113, 114
Reading 112
Writing 112

hashing passwords * 131
have method * 124
height 115
hexadecimal * 50
hex�digit 196
hour 82
htaccess * 131
html 62, 116, 128, 171, 174
HTTP * 72, 74, 93, 94, 101, 144, 146, 160, 172, 182
http://www.cbr.ru/scripts/XML_daily.asp 172
HTTP_ * 88, 89, 91
HTTP_USER_AGENT * 89
http�header 62

� I �
if 20, 50, 55
ifdef * 53
IIS 198
image 114, 115, 116, 117, 118, 119, 120, 121, 122, 123

Class 114
Constructors 114, 115
Drawing methods 117, 118, 119, 120, 121, 122, 123
Fields 115
Methods 116

image * 146
image.format 68
imap 102
img 116

Index 205

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

importNode 173, 178
in 52, 53
IN * 192
IN/OUT * 192
inc 87
include 60
include * 44, 91
inetd * 74
insert into * 170
insertBefore 178
install 193, 194, 196, 197, 198, 199

Installing and configuring Parser 193, 194, 196,
197, 198, 199

int 50, 86, 87, 88, 153
Class 86
Methods 86, 87, 88

intersection 111
intersects 111
is 52, 53
ISMAP * 102

� J �
join 166
JPEG * 115
JPG * 115
js 62
junction 124

Class 124

justext 100
justname 100

� K �
keys * 107

� L �
lastChild 181
lastday 86
le 52
left 154
legend * 118
length 120, 154
less or equal * 52
less then * 52
letter 196
limit 88, 105, 152, 161
LIMITS 194
line 119, 120, 168
lineno 68

line�style 117
line�width 117
list 98
load 62, 93, 114, 160, 172
local 187
localtime * 84
locate 166
location 146
lock 99
log 133
log10 133
loop * 57
lower 159
lowercase 196
ls * 98
lsplit * 157
lt 52

� M �
mail 128, 194

Class 128
Static methods 128

mail�header 62
MAIN 15, 25, 31, 40, 44, 73
make * 199
match 152, 154, 155
math 130, 131, 132, 133, 134, 135, 136

Class 130
Static fields 131
Static methods 131, 132, 133, 134, 135, 136

md5 97, 101, 133
mdate 94
measure 115
memory 139, 148

Class 139
Methods 139

memory * 148
menu 167
message 128
method exists * 124
mid 155
mime�type 94
MIME�TYPES 146, 194
minute 82
mod 87
mod_rewrite * 100
month 82, 84, 85
move 99
mul 87
multiply * 111

Index 206

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

mv * 99
mysql 185

� N �
name 94, 181
name * 100, 191
ne 52
news * 199
news:// * 74
nextSibling 181
NNTP * 74
no ext * 100
no path * 100
nodeName 181
nodeType 181
nodeValue 181
normalize 178
not * 52
not equal * 52
NOTATION_NODE 182
now 82
NULL * 192
number * 153, 168
number.format 68
number.zerodivision 68

� O �
odbc 187
offset 88, 105, 152, 161, 168
open 112
operator * 44, 72
optimized�html 62
Options of file format 160
or * 52
oracle 188
OUT * 192
ownerDocument 181

� P �
paint * 114
parentNode 181
parser.compile 68
parser.runtime 68
parser:// * 172
PARSER_VERSION 89
password * 131
path 75, 182
path * 99

PCRE 189
Perl 189
pgsql 187
PI 131
pid 149
pixel 120
PL/SQL * 192
PNG * 115
polybar 120
polygon 121
polyline 122
pos 156
POST * 101
PostgreSQL 187
postmatch 154
postprocess 73
pow 133
prematch 154
previousSibling 181
printf * 152
process 60
process id * 149
PROCESSING_INSTRUCTION_NODE 182
profile * 148, 149
properties * 47
publicId 181

� Q �
qtail 103
query 145
query * 169
query tail * 103

� R �
radians 132
random 134
rectangle 122
refresh 146
regexp 189
regulary * 199
release 114
rem 61
remove * 109, 113
removeAttribute 178
removeAttributeNode 178
removeChild 178
rename * 99
replace 123, 156
replace * 155

Index 207

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

replaceChild 178
request 144, 145

Class 144
Static fields 144, 145

response 146, 147, 148
Class 146
Static fields 146, 147
Static methods 148

result 44
right 154
roll 84
round 134
RPC 144
rsplit * 157
rus 85
rusage 149

� S �
save 96, 157, 169, 174
schedule * 199
scientific * 50
script * 199
search�namespaces 176
second 82
sector 123
select 169, 178
selectBool 180
selectNumber 180
selectSingle 179
selectString 179
self 44
send 72, 128
session 75, 112
set 168
SET_name[value] 47
setAttribute 178
setAttributeNode 178
SetEnv * 197
setter * 47
sha1 134
shift * 168
sign 131
sin 134
size 94, 163
size * 120
smtp.connect 68
smtp.execute 68
sort 169
source 68
specified 181

split 157
sprintf * 152
sql 25, 58, 62, 72, 81, 84, 88, 94, 105, 152, 161, 170,
194
sql.connect 68
sql.execute 68
SQLite 186
sql�string 84, 96
sqrt 135
src 115
SSI * 91
stack 192
stat 94
static 41
status 146, 148, 149, 150

Class 148
Fields 148, 149, 150

string 36, 38, 50, 53, 150, 151, 152, 153, 154, 155,
156, 157, 158, 159, 171, 174

Class 150
Methods 152, 153, 154, 155, 156, 157, 158, 159
Static methods 151, 152

sub 109
subject 128
substring * 155
switch 56
systemId 181

� T �
table 62, 159, 160, 161, 162, 163, 164, 166, 167, 168,
169

Class 159
Constructors 159, 160, 161
Copying and search options 162
Methods 163, 164, 166, 167, 168, 169
Options of file format 161
Retrieving data stored in a column 162
Retrieving data stored in current row as a hash
162

table * 107
tables 103
tagName 181
taint 61, 62
tan 134
target 181
text 94, 96, 123, 128, 174
TEXT_NODE 182
thick * 117
thread id * 150
throw 68, 69
thumbnail * 115, 116

Index 208

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

tid 150
time_t * 82, 85
to 128
transform 36, 175
trim 158
true 50
trunc 135
try 68
type 68
TZ 82, 84

� U �
uid64 136
unhandled_exception 68, 70, 194
unicode 196
union 110
unix socket 185
unix�timestamp 82, 85
untaint 61, 62
upper 159
upsize * 157
uri 62, 145
USD * 172
USE 42, 58
used 148
USER�AGENT * 89
UTF�8 72
uuid 135

� V �
void 170

Class 170
Methods 170

� W �
week 82, 85
weekday 82
weekyear 82
while 57
white�space 196
width 115
word 196

� X �
xdoc 36, 171, 172, 173, 174, 175, 176

Class 171
Constructors 171, 172

Document�to�text conversion parameters 175
Fields 176
Methods 173, 174, 175
Parameter of creating a new document: Base path
 172
parser://method/parameter. Reading XML from
arbitrary source 172

x�mailer 128
XML 36, 62, 68, 171, 174, 177
xml:base 172
XML�RPC 144
xnode 36, 177, 178, 179, 180, 181, 182

Class 177
Constants 182
Fields 181
Methods 178, 179, 180

xor * 52
XPath 36, 177, 178, 179, 180
XPath * 176
xsl:output … 175
xsl:param * 175
XSLT 36

� Y �
year 82, 84
yearday 82

Index 209

Copyright © 1997–2013 Art. Lebedev Studio | http://www.artlebedev.com

Parser 3.4.3

